https://www.selleckchem.com/products/gcn2-in-1.html The sympathetic nervous system (SNS) controls various physiological functions via the neurotransmitter noradrenaline. Activation of the SNS in response to psychological or physical stress is frequently associated with weakened immunity. Here, we investigated how adrenoceptor signaling influences leukocyte behavior. Intravital two-photon imaging after injection of noradrenaline revealed transient inhibition of CD8+ and CD4+ T cell locomotion in tissues. Expression of β-adrenergic receptor in hematopoietic cells was not required for NA-mediated inhibition of motility. Rather, chemogenetic activation of the SNS or treatment with adrenergic receptor agonists induced vasoconstriction and decreased local blood flow, resulting in abrupt hypoxia that triggered rapid calcium signaling in leukocytes and halted cell motility. Oxygen supplementation reversed these effects. Treatment with adrenergic receptor agonists impaired T cell responses induced in response to viral and parasitic infections, as well as anti-tumor responses. Thus, stimulation of the SNS impairs leukocyte mobility, providing a mechanistic understanding of the link between adrenergic receptors and compromised immunity.A cardinal feature of COVID-19 is lung inflammation and respiratory failure. In a prospective multi-country cohort of COVID-19 patients, we found that increased Notch4 expression on circulating regulatory T (Treg) cells was associated with disease severity, predicted mortality, and declined upon recovery. Deletion of Notch4 in Treg cells or therapy with anti-Notch4 antibodies in conventional and humanized mice normalized the dysregulated innate immunity and rescued disease morbidity and mortality induced by a synthetic analog of viral RNA or by influenza H1N1 virus. Mechanistically, Notch4 suppressed the induction by interleukin-18 of amphiregulin, a cytokine necessary for tissue repair. Protection by Notch4 inhibition was recapitulated by thera