Mycobacterium abscessus (M. abscessus), a rapidly growing mycobacterium, is an emergent opportunistic pathogen responsible for chronic bronchopulmonary infections in individuals with respiratory diseases such as cystic fibrosis. Most treatments of M. abscessus pulmonary infections are poorly effective due to the intrinsic resistance of this bacteria against a broad range of antibiotics including anti-tuberculosis agents. Consequently, the number of drugs that are efficient against M. abscessus remains limited. In this context, 19 oxadiazolone (OX) derivatives have been investigated for their antibacterial activity against both the rough (R) and smooth (S) variants of M. abscessus. Several OXs impair extracellular M. abscessus growth with moderated minimal inhibitory concentrations (MIC), or act intracellularly by inhibiting M. abscessus growth inside infected macrophages with MIC values similar to those of imipenem. Such promising results prompted us to identify the potential target enzymes of the sole extra and intracellular inhibitor of M. abscessus growth, i.e., compound iBpPPOX, via activity-based protein profiling combined with mass spectrometry. This approach led to the identification of 21 potential protein candidates being mostly involved in M. abscessus lipid metabolism and/or in cell wall biosynthesis. Among them, the Ag85C protein has been confirmed as a vulnerable target of iBpPPOX. This study clearly emphasizes the potential of the OX derivatives to inhibit the extracellular and/or intracellular growth of M. abscessus by targeting various enzymes potentially involved in many physiological processes of this most drug-resistant mycobacterial species.The phyllosphere epiphytic microbiome is composed of microorganisms that colonize the external aerial portions of plants. Relationships of plant responses to specific microorganisms-both pathogenic and beneficial-have been examined, but the phyllosphere microbiome functional and metabolic profile responses are not well described. Changing crop growth conditions, such as increased drought, can have profound impacts on crop productivity. Also, epiphytic microbial communities provide a new target for crop yield optimization. We compared Zea mays leaf microbiomes collected under drought and well-watered conditions by examining functional gene annotation patterns across three physically disparate locations each with and without drought treatment, through the application of short read metagenomic sequencing. Drought samples exhibited different functional sequence compositions at each of the three field sites. Maize phyllosphere functional profiles revealed a wide variety of metabolic and regulatory processes that differed in drought and normal water conditions and provide key baseline information for future selective breeding.Currently, aortic valve replacement is the only treatment capable of relieving left ventricle pressure overload in patients with severe aortic stenosis. It aims to improve cardiac function and revert hypertrophy, by triggering myocardial reverse remodeling. Despite immediately relieving afterload, reverse remodeling turns out to be extremely variable. Among other factors, the extent of reverse remodeling may depend on how well ubiquitin-proteasome system tackle hypertrophy. Therefore, we assessed tagged ubiquitin and ubiquitin ligases in the left ventricle collected from patients undergoing valve replacement and tested their association to the degree of reverse remodeling. Patients were classified according to the regression of left ventricle mass (ΔLVM) and assigned to complete (ΔLVM≥15%) or incomplete (ΔLVM≤5%) reverse remodeling groups. No direct inter-group differences were observed. Nevertheless, correlation analysis supports a fundamental role of the ubiquitin-proteasome system during reverse remodelingve hypertrophy, highlighting the therapeutic potential of targeting ubiquitin ligases in incomplete reverse remodeling.Similar to many large river valleys globally, the Sacramento River Valley has been extensively drained and leveed, hydrologically divorcing river channels from most floodplains. Today, the former floodplain is extensively managed for agriculture. Lack of access to inundated floodplains is recognized as a significant contributing factor in the decline of native Chinook Salmon (Oncorhynchus tshawytscha). We observed differences in salmon growth rate, invertebrate density, and carbon source in food webs from three aquatic habitat types-leveed river channels, perennial drainage canals in the floodplain, and agricultural floodplain wetlands. Over 23 days (17 February to 11 March, 2016) food web structure and juvenile Chinook Salmon growth rates were studied within the three aquatic habitat types. Zooplankton densities on the floodplain wetland were 53x more abundant, on average, than in the river. Juvenile Chinook Salmon raised on the floodplain wetland grew at 0.92 mm/day, 5x faster than fish raised in the adjacergy pathways important to the production of fisheries resources.Yersinia pestis, the causative agent of plague, is a highly lethal pathogen transmitted by the bite of infected fleas. Once ingested by a flea, Y. pestis establish a replicative niche in the gut and produce a biofilm that promotes foregut colonization and transmission. The rat flea Xenopsylla cheopis is an important vector to several zoonotic bacterial pathogens including Y. pestis. Some fleas naturally clear themselves of infection; however, the physiological and immunological mechanisms by which this occurs are largely uncharacterized. To address this, RNA was extracted, sequenced, and distinct transcript profiles were assembled de novo from X. cheopis digestive tracts isolated from fleas that were either 1) not fed for 5 days; 2) fed sterile blood; or 3) fed blood containing ~5x108 CFU/ml Y. pestis KIM6+. Analysis and comparison of the transcript profiles resulted in identification of 23 annotated (and 11 unknown or uncharacterized) digestive tract transcripts that comprise the early transcriptional response of the rat flea gut to infection with Y. pestis. The data indicate that production of antimicrobial peptides regulated by the immune-deficiency pathway (IMD) is the primary flea immune response to infection with Y. pestis. The remaining infection-responsive transcripts, not obviously associated with the immune response, were involved in at least one of 3 physiological themes 1) alterations to chemosensation and gut peristalsis; 2) modification of digestion and metabolism; and 3) production of chitin-binding proteins (peritrophins). https://www.selleckchem.com/products/ly3537982.html Despite producing several peritrophin transcripts shortly after feeding, including a subset that were infection-responsive, no thick peritrophic membrane was detectable by histochemistry or electron microscopy of rat flea guts for the first 24 hours following blood-feeding. Here we discuss the physiological implications of rat flea infection-responsive transcripts, the function of X. cheopis peritrophins, and the mechanisms by which Y. pestis may be cleared from the flea gut.