980 and 0.892 regression slopes for PIP and DIP, respectively, and Root Mean Squared Errors below 4°. Notably for the PIP joint, correlation was worsened by STA correction. The 95% imaging uncertainty interval was less then ± 1° for joints, and less then ± 0.25 mm for segment lengths. In summary, the HAWK marker set's accuracy was characterised for finger joint flexion angle changes in a small group of healthy individuals and static poses, and was found to benefit from skin movements during flexion.Screening for latent tuberculosis infection (LTBI) is indicated before immunosuppressive therapies but is complicated by lack of a gold standard and limited by, e.g., immunosuppression. This study aimed to investigate a series of patients diagnosed with LTBI during screening before immunosuppressive therapy, describing how the use of diagnostic tests and treatment evolved over time. This retrospective cohort study included all individuals diagnosed with LTBI during screening before intended immunosuppressive therapy in a tertiary care hospital between January 2000 and December 2017. Evidence for LTBI, including history, tuberculin skin test (TST), QuantiFERON (QFT) result and suggestive lesions on chest radiography (CXR), and CT scan if available, was analyzed. The study included 295 individuals with LTBI, with median follow-up of 3.8 years (IQR 1.7-7.4 years). During screening, TST, QFT, and CXR were positive in 80.8%, 53.4%, and 22.7%, respectively. Chest CT revealed lesions associated with past tuberculosis infection in around 70%, significantly more frequent than CXR. In patients diagnosed with LTBI, we observed that the use of TST declined over time whereas the use of QFT increased, and that isoniazid was replaced with rifampicin as preferential treatment. Preventive treatment was started in 82.3%, of whom 88.6% completed treatment. During follow-up, no individuals developed active tuberculosis. The diagnosis of LTBI was based on history, TST, QFT, and/or CXR in nearly every possible combination, but mostly on TST and QFT. The most striking trends were the decreased use of TST, increased use of QFT, and the replacement of isoniazid with rifampicin for treatment.PURPOSE Solid dispersions (SDs) represent the most common formulation technique used to increase the dissolution rate of a drug. https://www.selleckchem.com/products/a-769662.html In this work, the three most common methods used to prepare SDs, namely spray-drying, solvent-casting and freeze-drying, have been compared in order to investigate their effect on increasing drug dissolution rate. METHODS Three formulation strategies were used to prepare a polymer mixture of polyvinyl-alcohol (PVA) and maltodextrin (MDX) as SDs loaded with the following three model drugs, all of which possess a poor solubility Olanzapine, Dexamethasone, and Triamcinolone acetonide. The SDs obtained were analysed and compared in terms of drug particle size, drug-loading capacity, surface homogeneity, and dissolution profile enhancement. Physical-chemical characterisation was conducted on pure drugs, as well as the formulations made, by way of thermal analysis and infrared spectroscopy. RESULT The polymers used were able to increase drug saturation solubility. The formulation strategies affected the drug particle size, with the solvent-casting method resulting in more homogenous particle size and distribution when compared to the other methods. The greatest enhancement in the drug dissolution rate was seen for all the samples prepared using the solvent-casting method. CONCLUSION All of the methods used were able to increase the dissolution rate of the pure drugs alone, however, the solvent-casting method produced SDs with a higher surface homogeneity, drug incorporation capability, and faster dissolution profile than the other techniques.BACKGROUND The validation of the Treatment-induced Neuropathy Assessment Scale (TNAS v2.0), a patient-reported outcome measure of symptoms associated with cancer treatment-induced peripheral neuropathy (TIPN), was previously reported. Further patient input (qualitative interviewing, cognitive debriefing) suggested that the measure should be modified to better reflect the TIPN experience. We report the performance of a revised version (TNAS v3.0) for assessing TIPN across cancer treatments. This TNAS version incorporates extensive patient input, in accordance with FDA guidance on the development of patient-reported outcomes measures. Patients with multiple myeloma, colorectal cancer, or gynecological cancer treated with bortezomib, oxaliplatin, or taxane-platinum combination therapy, respectively, completed the TNAS v3.0, European Organization for Research and Treatment of Cancer Chemotherapy-Induced Peripheral Neuropathy (EORTC-CIPN20), and a cognitive debriefing survey during a scheduled clinic visit. Patieningful differences in TNAS v3.0 scores and demonstrate its responsiveness over time.A rapid fluorometric method is described for the determination of lactate and cholesterol by using ZnO nanowires (ZnO NWs). The assay is based on the detection of the hydrogen peroxide generated during the enzymatic reactions of the oxidation of lactate or cholesterol. Taking advantage of the electrostatic interactions between the enzymes and the ZnO NWs, two bioconjugates were prepared by mixing the nanomaterial and the enzymes, viz. lactate oxidase (LOx) or cholesterol oxidase (ChOx). The enzymatically generated hydrogen peroxide quenches the fluorescence of the ZnO NWs, which have emission peaks at 384 nm and at 520 nm under 330 nm photoexcitation. H2O2 quenches the 520 nm band more strongly. Response is linear up to 1.9 μM lactate concentration, and up to 1.1 μM cholesterol concentration. Relative standard deviation was found to be 5%. The detection limits for lactate and cholesterol are 0.54 and 0.24 μM, respectively. Graphical abstractSchematic representation of fluorescence assay based on ZnO nanowires photoluminiscence for lactate and colesterol detection.Typesetting error occurred and author corrections to the numbering of figures and captions at the proofing stage were not incorporated in the published article.