https://www.selleckchem.com/products/cc-930.html Long non-coding RNAs (lncRNAs) can act as competing endogenous RNAs (ceRNAs), interacting with microRNAs (miRNAs) and playing an important role in tumor progression. However, the role of lncRNA-mediated ceRNAs in glioma remains largely unknown. The present study aimed to identify novel lncRNAs and their associated function in glioma. RNA sequencing and corresponding clinical data from patients with glioma were obtained from The Cancer Genome Atlas. A total of 598 glioma tissues and 5 normal brain tissues were analyzed in the present study. The differentially expressed (DE) lncRNAs, mRNAs and miRNAs were identified using R packages and were used to construct a ceRNA network. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses were performed to investigate the biological functions of the DEmRNAs. Kaplan-Meier curve analysis was performed to investigate the association between DElncRNA expression and patient outcome. A total of 752 DElncRNAs, 2,079 DEmRNAs and 113 DEmiRNAs were identified between glioma and normal tissues. A lncRNA-miRNA-mRNA ceRNA network consisting of 61 lncRNAs, 12 miRNAs and 92 mRNAs was constructed. Survival analysis indicated that 36 DElncRNAs, 72 DEmRNAs and 3 DEmiRNAs were associated with overall survival in patients with glioma. The present study identified novel lncRNAs associated with survival prognosis and may facilitate further investigation of lncRNA-mediated ceRNA regulatory mechanisms in glioma.Prostate cancer (PCa) is one of the most common types of cancer in males globally. However, the molecular mechanisms underlying PCa progression remain largely unclear. In the present study, Gene Expression Omnibus (GEO) datasets and datasets from The Cancer Genome Atlas (TCGA) were used to analyze the expression of lysine demethylase 5B (KDM5B) in PCa. Proliferation, cell cycle and migration assays were used to detect the functional roles of KDM5B. It was found KDM5B was upregulated