https://www.selleckchem.com/JAK.html CONCLUSION Different analysis illustrated the existence of both components. The most important property alteration of nanocomposite was the increment of pore mean diameters and reduction in pore volumes in comparison with free SAPO-34. Due to low price of Clinoptilolite, the new catalyst develops the economy of the process. Using this composite, according to formation of multi-sized pores located hierarchically on the surface of the catalyst and increased surface area, significant amounts of Ethylene and Propylene, in comparison with free SAPO-34, were produced, as well as deactivation time that was improved. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.net.SAPO-34/AlMCM-41, as a hierarchical nanocomposite molecular sieve was prepared by sequential hydrothermal and dry-gel methods studied for catalytic conversion of methanol to light olefins. Pure AlMCM-41, SAPO-34, and their physical mixture were also produced and catalytically compared. Physicochemical properties of materials were mainly investigated using XRD, N2 isothermal adsorptiondesorption, FESEM, FT-IR, NH3-TPD, and TG/DTG/DTA techniques. Micro-meso hierarchy of prepared composite could be demonstrated by XRD and BET analyses. Catalytic performance of materials illustrated that the methanol conversion on the prepared composite was about 98% for 120 min which showed a higher activity than the other catalysts. The initial reaction selectivity to light olefins for the composite was also comparable with those for the other catalysts. Furthermore, the results revealed that SAPO-34/AlMCM-41 preparation decreased the concentration and strength of active acid sites of the catalyst which could beneficially affect the deposition of heavy molecular products on the catalyst. However, as observed, the prepared composite was deactivated in olefins production faster than pure SAPO-34. The small mean pore diameter of composite could be main