A high level of reactive oxygen species (ROS) such as hydrogen peroxide (H2O2) upregulates pro-inflammatory cytokines and inhibits the osteogenic differentiation of mesenchymal stem cells (MSCs), which are key factors in bone regeneration. Ursodeoxycholic acid (UDCA), a hydrophilic bile acid, has antioxidant and anti-inflammatory activities and also plays beneficial roles in bone regeneration by stimulating the osteogenic differentiation of MSCs while suppressing their adipogenic differentiation. Despite its remarkable capacity for bone regeneration, multiple injections of UDCA induce adverse side effects such as mechanical stress and contamination in bone defects. To fully exploit the beneficial roles of UDCA, a concept polymeric prodrug was developed based on the hypothesis that removal of overproduced H2O2 will potentiate the osteogenic functions of UDCA. In this work, we report bone regenerative nanoparticles (NPs) formulated from a polymeric prodrug of UDCA (PUDCA) with UDCA incorporated in its backbone through H2O2-responsive peroxalate linkages. https://www.selleckchem.com/products/GDC-0449.html The PUDCA NPs displayed potent antioxidant and anti-inflammatory activities in MSCs and induced osteogenic rather than adipogenic differentiation of the MSCs. In rat models of bone defect, the PUDCA NPs exhibited significantly better bone regeneration capacity and anti-inflammatory effects than equivalent amounts of UDCA. We anticipate that PUDCA NPs have tremendous translational potential as bone regenerative agents.Biosensors are finding new places in science, and the growth of this technology will lead to dramatic improvements in the ability to detect microorganisms in recreational and source waters for the protection of public health. Much of the improvement in biosensors has followed developments in molecular biology processes and coupling these with advances in engineering. Progress in the fields of nano-engineering and materials science have opened many new avenues for biosensors. The adaptation of these diverse technological fields into sensors has been driven by the need to develop more rapid sensors that are highly accurate, sensitive and specific, and have other desirable properties, such as robust deployment capability, unattended operations, and remote data transfer. The primary challenges to the adoption of biosensors in recreational and source water applications are cost of ownership, particularly operations and maintenance costs, problems caused by false positive rates, and to a lesser extent false negative rates, legacy technologies, policies and practices which will change as biosensors improve to the point of replacing more traditional methods for detecting organisms in environmental samples.COVID-19 pandemic presents an unprecedented challenge to identify effective drugs for treatment. Despite multiple clinical trials using different agents, there is still a lack of specific treatment for COVID-19. Having the potential role in suppressing inflammation, immune modulation, antiviral and improving respiratory symptoms, this review discusses the potential role of methylxanthine drugs like pentoxifylline and caffeine in the management of COVID-19 patients. COVID-19 pathogenesis for clinical features like severe pneumonia, acute lung injury (ALI) / acute respiratory distress syndrome (ARDS), and multi-organ failures are excessive inflammation, oxidation, and cytokine storm by the exaggerated immune response. Drugs like pentoxifylline have already shown improvement of the symptoms of ARDS and caffeine has been in clinical use for decades to treat apnea of prematurity (AOP) in preterm infants and improve respiratory function. Pentoxifylline is well-known anti-inflammatory and anti-oxidative molecules that have already shown to suppress Tumor Necrosis Factor (TNF-α) as well as other inflammatory cytokines in pulmonary diseases, and this may be beneficial for better clinical outcomes in COVID-19 patients. Pentoxifylline enhances blood flow, improves microcirculation and tissue oxygenation, and caffeine also efficiently improves tissue oxygenation, asthma, decreases pulmonary hypertension and an effective analgesic. There are significant shreds of evidence that proved the properties of pentoxifylline and caffeine against virus-related diseases as well. Along with the aforementioned evidences and high safety profiles, both pentoxifylline and caffeine offer a glimpse of considerations for future use as a potential adjuvant to COVID-19 treatment. However, additional clinical studies are required to confirm this speculation.An impaired gut barrier, possibly leading to visceral hypersensitivity has been recently recognized to be one of the pivotal pathophysiology of irritable bowel syndrome (IBS). We previously showed that lipopolysaccharide (LPS), corticotropin-releasing factor (CRF), and repeated water avoidance stress (WAS) induce visceral hypersensitivity and colonic hyperpermeability via pro-inflammatory cytokine signaling (rat IBS models). Although the precise mechanisms of action are unclear, imipramine, a tricyclic antidepressant, improves IBS symptoms, and also has anticytokine properties. In this study, we hypothesized that imipramine improves the gut barrier to ameliorate IBS symptoms. To test this hypothesis, we determined its effects on visceral hypersensitivity and colonic hyperpermeability in rat IBS models. The visceral pain threshold in response to colonic balloon distention was electrophysiologically estimated by abdominal muscle contractions, and colonic permeability was measured by quantifying the absorbed Evans blue in colonic tissue in vivo. Subcutaneous imipramine injection (7, 20, 50 mg/kg) dose-dependently inhibited LPS-induced (1 mg/kg, subcutaneously) visceral hypersensitivity and colonic hyperpermeability. Imipramine also blocked these gastrointestinal (GI) changes induced by CRF (50 μg/kg, intraperitoneally) or repeated WAS (1 h daily for 3 days). Yohimbine (an α2-adrenoceptors antagonist), sulpiride (a dopamine D2 receptor antagonist), and naloxone hydrochloride (an opioid receptor antagonist) reversed these effects of imipramine in the LPS model. Therefore, imipramine may block GI changes in IBS via α2-adrenoceptors, dopamine D2, and opioid signaling. The improvement in the gut barrier resulting in inhibition of visceral pain is considered a valid mechanism of imipramine to ameliorate IBS symptoms.