https://www.selleckchem.com/products/aunp-12.html Given the severity and rate of the predicted changes to Komodo dragon habitat patch occupancy (a proxy for area of occupancy) and abundance, urgent conservation actions are required to avoid risk of extinction. These should, as a priority, be focused on managing habitat on the islands of Komodo and Rinca, reflecting these islands' status as important refuges for the species in a warming world. Variability in our model projections highlights the importance of accounting for uncertainties in demographic and environmental parameters, structural assumptions of global climate models, and greenhouse gas emission scenarios when simulating species metapopulation dynamics under climate change.The impacts of climate change on worldwide crop production become increasingly severe. Thus, sustainable enhancements of agricultural production are needed. The present study investigated the effects of drought and arbuscular mycorrhizal fungi on wheat plants (Triticum aestivum) and their interaction with aphids. Considering predicted climate change scenarios, wheat plants were exposed to well-watered conditions, continuous drought (CD), or pulsed (PD) drought and plants were grown without (NM) or with mycorrhizal (AM) fungi. Ear biomass and harvest index were evaluated when grains were produced. Moreover, drought- and mycorrhiza-induced changes in the amino acid composition of leaf phloem exudates were studied and the population growth and survival of Sitobion avenae aphids on those plants measured. Wheat plants responded differently toward the irrigation treatments. Under drought stress, ear biomass was reduced, while AM resulted in an enhanced harvest index. In phloem exudates especially, relative concentrations of the osmoprotectant proline were modulated by drought. Aphid population size was influenced by the interaction of drought and mycorrhiza treatment. This study emphasizes the pronounced influence of irrigation frequency on pl