https://www.selleckchem.com/products/OSI-930.html 2 ± 0.2 elementary charges and 30 ± 2 mV, respectively. Thus, whereas the channel kinetics, specifically its conductance and rates of gating response to voltage steps, demonstrates a clear increase with temperature, the conformational voltage-dependent equilibria are virtually insensitive to temperature. These results, which may be a general feature of β-barrel channel gating, suggest either an entropy-driven gating mechanism or a role for enthalpy-entropy compensation.Lung cancer is one of the leading causes of death in cancer patients. Epithelial-mesenchymal transition (EMT) plays an important role in lung cancer progression. Therefore, for lung cancer treatment, it is crucial to find substances that inhibit EMT. Ethacrynic acid (ECA) is a diuretic that inhibits cellular ion flux and exerts anticancer effects. However, the effects of ECA on EMT in lung cancer remain unclear. We examined the effects of ECA on sphingosylphosphorylcholine (SPC) or TGF-β1-induced EMT process in A549 and H1299 cells via reverse transcription polymerase chain reaction and Western blotting. We found that ECA inhibited SPC-induced EMT and SPC-induced WNT signalling in EMT. We observed that SPC induces the expression of NDP [Norrie disease protein] and WNT-2, whereas ECA suppressed their expression. SPC-induced WNT activation, EMT, migration, and invasion were suppressed by NDP small-interfering RNA (siNDP), but NDP overexpression (pNDP) enhanced these events in A549 and H1299 cells. Accordingly, NDP expression may influence lung cancer prognosis. In summary, our results revealed that ECA inhibited SPC or TGF-β1-induced EMT in A549 and H1299 lung cancer cells by downregulating NDP expression and inhibiting WNT activation. Therefore, ECA might be a new drug candidate for lung cancer treatment.Interstitial cystitis/bladder pain syndrome (IC/BPS) is a type of chronic bladder inflammation characterized by increased voiding frequency, urgency an