https://www.selleckchem.com/products/ch5424802.html Periodic nanostructures, a group of nanomaterials consisting of single or multiple nano units/components periodically arranged into ordered patterns (e.g., vertical and lateral superlattices), have attracted tremendous attention in recent years due to their extraordinary physical and chemical properties that offer a huge potential for a multitude of applications in energy conversion, electronic and optoelectronic applications. Recent advances in the preparation strategies of periodic nanostructures, including self-assembly, epitaxy, and exfoliation, have paved the way to rationally modulate their ferroelectricity, superconductivity, band gap and many other physical and chemical properties. For example, the recent discovery of superconductivity observed in "magic-angle" graphene superlattices has sparked intensive studies in new ways, creating superlattices in twisted 2D materials. Recent development in the various state-of-the-art preparations of periodic nanostructures has created many new ideas and findings, warranting a timely review. In this review, we discuss the current advances of periodic nanostructures, including their preparation strategies, property modulations and various applications.Dietary fiber is an important nutrient for improving human health and controlling calorie intake, and is used to produce functional foods. In this study, insoluble dietary fiber (IDF) from three sources (enoki mushrooms, carrots, and oats) was characterized and their hypoglycemic and hypolipidemic effects were determined with in vitro and in vivo models. The results of Scanning electron microscopy (SEM) showed that the IDF from the three sources have different morphologies. The Fourier transform infrared spectroscopy (FT-IR) results showed that the IDF samples from the three sources have similar active groups, but the X-ray diffraction (XRD) and thermogravimetric analysis/differential scanning calorimetry (TGA/DSC) results