influenzae. Surprisingly, we found that the two isolates (SD2016_1 and SD2016_2) belonged to distantly related lineages, suggesting two independent transmission events and ruling out a local outbreak. Despite being distantly related, the two isolates belong to two different lineages that have exchanged capsule loci in the recent past. Therefore, as in other bacterial pathogens, capsule switching by horizontal gene transfer may be an important evolutionary mechanism of vaccine evasion in H. influenzae.A novel bacterium, designated JB02H27T, was isolated from marine sediment collected from the southern Scott Coast, Antarctica. Cells were Gram-stain-negative, facultatively anaerobic, polar-flagellated and motile rods. Growth occurred at 4-45 °C, at pH 7.0-9.0 and with 3-25 % (w/v) NaCl. Phylogenetic trees based on 16S rRNA gene sequences showed that strain JB02H27T consistently fell within the genus Marinobacter and formed a clade together with Marinobacter algicola DG893T (98.8 % similarity), Marinobacter confluentis KCTC 42705T (98.4 %), Marinobacter salarius R9SW1T (98.4%) and Marinobacter halotolerans CP12T (97.9 %), which were subsequently used as reference strains for comparisons of phenotypic and chemotaxonomic characteristics. Average nucleotide identity values between strain JB02H27T and the four related type strains were 80.9, 76.6, 81.9 and 76.3 %, respectively. The major fatty acids were summed feature 3, C16  0, C18  1 ω9c and C16  0 N alcohol. The polar lipids included phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, and an unidentified phospholipid, aminolipid, aminophospholipid and glycolipids. https://www.selleckchem.com/products/sovilnesib.html The sole respiratory quinone was ubiquinone-9. The DNA G+C content was 56.9 mol%. Based on the genomic, phylogenetic, phenotypic and chemotaxonomic analysis, we propose that strain JB02H27T represents a novel species of the genus Marinobacter, for which the name Marinobacter denitrificans sp. nov. is proposed. The type strain is JB02H27T (=GDMCC 1.1528T=KCTC 62941T).A novel bacterial strain, designated KMB7T, isolated from a freshwater pond in Taiwan, was characterized using a polyphasic taxonomic approach. Cells were Gram-stain-negative, motile by means of a single polar flagellum, rod-shaped and formed cream colonies. Optimal growth occurred at 25 °C, pH 7, and in the absence of NaCl. Phylogenetic analyses based on 16S rRNA gene sequences and an up-to-date bacterial core gene set (92 protein clusters) indicated that strain KMB7T is affiliated with species in the genus Aquabacterium. The 16S rRNA gene sequence similarity indicated that strain KMB7T is closely related to species within the genus Aquabacterium (95.2-97.6 % sequence similarity) and is most similar to A. fontiphilum CS-6T (97.6 %), followed by A. parvum B6T (97.5 %). The average nucleotide identity and digital DNA-DNA hybridization identity between strain KMB7T and the closely related strains were 74.6-78.0 % and 19.0-21.2 %, respectively. The major fatty acids of strain KMB7T were summed feature 3 (C16  1  ω7c and/or C16  1  ω6c), C18  1  ω7c and C16  0. The polar lipid profile consisted of a mixture of phosphatidylethanolamine, phosphatidylglycerol, phosphatidylserine, diphosphatidylglycerol and four unidentified phospholipids. The sole isoprenoid quinone was ubiquinone-8 (Q-8). Genomic DNA G+C content of strain KMB7T was 65.4 %. On the basis of phenotypic and genotypic properties and phylogenetic inference, strain KMB7T should be classified in a novel species of the genus Aquabacterium, for which the name Aquabacterium lacunae sp. nov. is proposed. The type strain is KMB7T (=BCRC 81156T=LMG 30924T=KCTC 62867T).A novel Gram-stain-negative, aerobic and rod-shaped halophilic archaeon, designated HD8-45T, was isolated from the red brine of salted brown alga Laminaria produced at Dalian, PR China. According to the results of 16S rRNA gene and rpoB' gene sequence comparisons, strain HD8-45T showed the highest sequence similarity to the corresponding genes of Salinirussus salinus YGH44T (95.1 and 85.2 % similarities, respectively), Halovenus aranensis EB27T (91.2 and 86.0 % similarities, respectively). The low sequence similarity and the phylogeny implied the novel generic status of strain HD8-45T. Genomic relatedness analyses showed that strain HD8-45T were clearly distinguished from other species in the order Halobacteriales, with average nucleotide identity, amino acid identity and in silico DNA-DNA hybridization values not more than 75.1, 65.6 and 21.5 %. The polar lipid pattern contained phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester, two major glycolipids and two minor glycolipids. The two major glycolipids and a minor glycolipid were chromatographically identical to disulfated mannosyl glucosyl diether, sulfated mannosyl glucosyl diether and mannosyl glucosyl diether, respectively. The major respiratory quinones were menaquinone MK-8 and MK-8(H2). The DNA G+C content was 62.0 mol% (Tm) and 61.9 mol% (genome). All these results showed that strain HD8-45T represents a novel species of a new genus in the order Halobacteriales, for which the name Salinibaculum litoreum gen. nov., sp. nov. is proposed. The type strain of Salinibaculum litoreum is HD8-45T (=CGMCC 1.15328T=JCM 31107T).Next-generation sequencing (NGS) is now widely used in microbiology to explore genome evolution and the structure of pathogen outbreaks. Bioinformatics pipelines readily detect single-nucleotide polymorphisms or short indels. However, bacterial genomes also evolve through the action of small transposable elements called insertion sequences (ISs), which are difficult to detect due to their short length and multiple repetitions throughout the genome. We designed panISa software for the ab initio detection of IS insertions in the genomes of prokaryotes. PanISa has been released as open source software (GPL3) available from https//github.com/bvalot/panISa. In this study, we assessed the utility of this software for evolutionary studies, by reanalysing five published datasets for outbreaks of human major pathogens in which ISs had not been specifically investigated. We reanalysed the raw data from each study, by aligning the reads against reference genomes and running panISa on the alignments. Each hit was automatically curated and IS-related events were validated on the basis of nucleotide sequence similarity, by comparison with the ISFinder database.