This work was motivated by the demand of European Directorate for the Quality of Medicines and HealthCare (EDQM). A new liquid chromatographic (LC) method was developed for terazosin impurity profiling to replace the old European Pharmacopoeia (Ph. Eur.) method. This new method is published as part of the new Ph. Eur. monograph proposal of terazosin in Pharmeuropa issue 32.2. The aim of the method renewal was to cut the analysis time from 90 min (2 × 45 min) down to below 20 min. The Ph. Eur. monograph method is based on two different chromatographic separations to analyze the specified impurities of terazosin. The reason for the two methods is that two of the impurities are not sufficiently retained in reversed phase (RP) conditions, not even with 100% water as eluent. Therefore, next to RP, an ion-pair (IP) chromatographic method has to be applied to analyze those two impurities. With our new proposed method it was possible to appropriately increase the retention of the two critical compounds using alternatwo columns from different providers (Kinetex F5 and SpeedCore PFP) can be used as replacement columns, providing sufficient resolution at the same working point and a high degree of robustness.Antrodia Cinnamomea is a fungus species widely used as a herb medicine for hypertension, cancer and handover. Nevertheless, the biological roles of Antrodia Cinnamomea on the molecular mechanism of liver cancer are not entirely understood. To determine whether Antrodia Cinnamomea is able to be used for the treatment of liver cancer and its molecular mechanism, we examined the effect of Antrodia Cinnamomea on the differential proteomic patterns in liver cancer cell lines HepG2 and C3A as well as in Chang's liver cell, a normal liver cell, using quantitative proteomic approach. The proteomic analysis demonstrated that abundance of 82, 125 and 125 proteins was significantly altered in Chang's liver cells, C3A and HepG2, respectively. The experimental outcomes also demonstrated that Antrodia Cinnamomea-induced cytotoxicity in liver cancer cells mostly involved dysregulation of protein folding, cytoskeleton regulation, redox-regulation, glycolysis pathway as well as transcription regulation. Further analysis also revealed that Antrodia Cinnamomea promoted misfolding of intracellular proteins and dysregulate of cellular redox-balance resulting in ER-stress. To sum up our studies demonstrated that the proteomic strategy used in this study offered a tool to investigate the molecular mechanisms of Antrodia Cinnamomea-induced liver cancer cytotoxicity. The proteomic results might be further evaluated as prospective targets in liver cancer treatment.Datura innoxia Mill., a traditional Chinese herbal medicine, produces tropane alkaloids such as hyoscyamine and scopolamine. Scopolamine has a larger demand than hyoscyamine due to its stronger pharmacological effects and fewer side reactions. It is extracted from solanaceous plants. However, the content of scopolamine is lower than hyoscyamine in D. innoxia. Hyoscyamine 6β-hydroxylase (H6H, EC1.14.11.11) is the key enzyme which can catalyze hyoscyamine to form scopolamine. In this study, a cDNA encoding H6H was cloned from D. innoxia roots and named Dih6h. The full-length cDNA is 1413 bp in length with a 1044-bp open reading frame encoding 347 amino acids. The deduced protein sequence of D. innoxia H6H (DiH6H) shared high identity with H6Hs from other plants. The DiH6H was heterologously expressed in Escherichia coli and purified via His-tag affinity technique. The recombinant DiH6H showed activity in transforming hyoscyamine to scopolamine. Despite Dih6h mRNA was detected in various tissues, its levels in roots were higher than that in other tissues. Indeed, scopolamine accumulation was low in roots, but it was very high in aerial parts, especially in flowers and seeds. These observations suggest that scopolamine may be synthesized in the roots and subsequently transported to the aerial parts. To further verify in vivo function of DiH6H, the cDNA of DiH6H was overexpressed in D. innoxia hairy roots. As expected, an increase of scopolamine production was observed in the positive transformants. The results provide a potential strategy for increasing scopolamine yield by metabolic engineering of its biosynthetic pathway in D. innoxia.Cytokinins are important hormones involved in many aspects of plant growth and development. However, there remain many knowledge gaps with regard to their metabolism and transport mechanisms. Here, we characterise a half-size ATP binding cassette G (ABCG) transporter gene, also called white-brown complex transporter, VviABCG14, from grapevine (Vitis vinifera L. cv. Pinot noir). Quantitative real-time PCR analysis shows the expression of VviABCG14 gene is significantly increased after grape berries are treated with exogenous N-(2-chloro-4-pyridyl)-N'-phenylurea (CPPU) and trans-zeatin (tZ). Significant differences in phenotype were observed between overexpressing VviABCG14 transgenic and wild-type Arabidopsis lines grown for 12 days. The fresh weight of transgenic Arabidopsis was greater than of wild-type plants, and root lengths were greater. After growing in soil for 26 days, the vegetative growth of transgenic lines significantly greater than the wild-type and the bolting rate was lower. Hormone content analysis indicates the levels of tZ in the shoots of overexpressing transgenes are higher than in wild-types. Using the split-ubiquitin yeast membrane system and bimolecular fluorescence complementation assay we show VviABCG14 and VviABCG7 transporter can form a heterodimer. Meanwhile, VviABCG7 is also significantly induced by exogenous CPPU and tZ in grape berries. Altogether, our results suggest VviABCG14 may affect the phenotype of Arabidopsis by transporting cytokinins and VviABCG14 interacts with VviABCG7 to form a heterodimer.There must be pathophysiological reason why "cold" viruses like SARS-CoV-2 show proclivity to nasal cavity, oral cavity, pharyngeal cavity and upper airways which have lower temperature than core body temperature. https://www.selleckchem.com/products/decursin.html Henceforth, facemasks' "therapeutic" role against SARS-CoV-2 must be explored because personal "therapeutic" environments may get created under facemasks due to rebreathing of ~95°F "hot" and ~80% "humid" exhalations which may constantly mitigate SARS-CoV-2 inside nasal cavity, oral cavity, pharyngeal cavity and upper airways.