Hepatocellular carcinoma (HCC) is one of the most common and serious types of cancer in the world. Currently, the treatment options for patients with HCC are limited. Lipid metabolic alterations are being recognized as a therapeutic target in the past few years. De novo lipogenesis has been frequently observed in HCC. Fatty acid synthase (FASN) is the key enzyme of de novo lipogenesis. Previous studies have indicated that loss of FASN suppresses the growth of HCC cells, but it cannot completely prevent HCC formation in vivo. Thus, other mechanisms that can support HCC tumor formation in the absence of de novo lipogenesis maybe existed. In a study recently published in Gut, Che and colleague investigated the functions of Fasn in HCC mouse model and explore the crosstalk between de novo lipogenesis and cholesterol biosynthesis-associated pathway during HCC development. These findings highlight the simultaneous inhibition of de novo lipogenesis and cholesterol biosynthesis as a novel therapeutic and prevention strategy for HCC.Tumor-to-tumor metastasis is the presence of a metastatic deposit within a second malignant primary, and its identification could be challenging, particularly when the latter malignancy has not yet been discovered. Renal cell carcinoma is one of the known recipients. Here we present a 52 years old woman who presented with a small nodule in the left kidney, which had a biphasic cell proliferation, chromophobe type, and signet-ring cell type for which we suggested to investigate the presence of a second tumor of gastrointestinal origin. We present this case for the rarity of its presentation, for the peculiar histological symbiosis we found between the two tumor entities, and for the challenging diagnosis due to the presence of an occult aggressive primary tumor.Signs and symptoms associated with testicular and paratesticular structures should not be underestimated because they may hide diseases requiring immediate evaluation and treatment, such as germline tumors or sarcomas, with the latter histotypes being more common among elderly patients. Unfortunately, the COVID-19 pandemic in Italy has led to a diagnostic delay of several malignancies and the impact of this delay has likely been underestimated. Paratesticular leiomyosarcoma represents a very rare subtype of sarcoma. Here we describe a 57-year-old man who presented to the emergency department with dyspnea and a voluminous mass in the right paratesticular region. https://www.selleckchem.com/products/iwp-2.html At the appearance of the scrotal mass 9 months prior, he had refused to undergo a urological evaluation due to fear of contracting COVID-19. We present this case for its histological rarity and to document a case of diagnostic and therapeutic delay during the pandemic in Lombardy.In the last decade, there has been increasing research dedicated to food immunotherapy to induce clinical desensitization and provide protection by increasing clinical reaction thresholds. Results from recent food immunotherapy studies with differing routes of administration (oral, sublingual, and epicutaneous) suggest that food immunotherapy can induce clinical desensitization with varying levels of safety, however lasting tolerance has not been demonstrated. Furthermore, treatment side effects and dosing logistics may make the therapies difficult for some supporting the need for alternative treatment approaches. Peptide immunotherapy and DNA vaccine approaches should in theory allow for safer administration by decreasing allergenicity but proof of their clinical efficacy and immunogenicity remains to be proven. Biologic agents may allow for increased safety and rapid up-dosing of immunotherapy with the added benefit of treating multiple allergens simultaneously.Herpes simplex virus (HSV) can infect a broad host range and cause mild to life threating infections in humans. The surface glycoproteins of HSV are evolutionarily conserved and show an extraordinary ability to bind more than one receptor on the host cell surface. Following attachment, the virus fuses its lipid envelope with the host cell membrane and releases its nucleocapsid along with tegument proteins into the cytosol. With the help of tegument proteins and host cell factors, the nucleocapsid is then docked into the nuclear pore. The viral double stranded DNA is then released into the host cell's nucleus. Released viral DNA either replicates rapidly (more commonly in non-neuronal cells) or stays latent inside the nucleus (in sensory neurons). The fusion of the viral envelope with host cell membrane is a key step. Blocking this step can prevent entry of HSV into the host cell and the subsequent interactions that ultimately lead to production of viral progeny and cell death or latency. In this review, we have discussed viral entry mechanisms including the pH-independent as well as pH-dependent endocytic entry, cell to cell spread of HSV and use of viral glycoproteins as an antiviral target.The macrophage stimulating protein (MSP)-Recepteur d'origine nantais (RON) signaling pathway regulates macrophage function. Here, we verified RON receptor expression in bone marrow-derived dendritic cells (BMDCs) by real time-PCR, Western blot, and flow cytometry. Flow cytometry was used to detect the changes in MHC II and CD86 expression following the inhibition of RON in BMDCs and splenic dendritic cells (DCs). Immunoprecipitation and Western blot were used to detect the level of MHC II and CD86 ubiquitination. An enzyme-linked immunosorbent assay was used to detect cytokine release, and a mixed lymphocyte reaction was performed to evaluate DC maturity. The results show that the inhibition of RON leads to an increase in March-1 transcription, which intensifies the ubiquitination of MHC II and CD86 and ultimately leads to a decreased level of these two molecules. The mixed lymphocyte reaction provided evidence that RON inhibition decreased the ability of DCs to promote the proliferation of T cells. The MSP-RON signaling pathway may play an important role in lipopolysaccharide (LPS)-stimulated DC maturation through March-I and may protect DC differentiation following LPS stimulation.