Peat fires in tropical peatland release a substantial amount of carbon into the environment and cause significant harm to peatlands and the ecology, resulting in climate change, biodiversity loss, and the alteration of the ecosystem. It is essential to understand peat fires and to develop more effective methods for controlling them. To estimate carbon emissions and monitor fires, the depth of burning can measure the overall burnt down the volume, which is proportional to the carbon emissions that are emitted to the environment. The first step is to understand the technique of measuring the depth of the burn. However, there is a lack of integrated information regarding the burning depth for peat fires. This review paper discusses the techniques used to measure the burning depth, with particular attention given to quantifying carbon emissions. The article also provides information on the types of methods used to determine the burning depths. This research contributes to the field of peat fire by providing a readily available reference for practitioners and researchers on the current state of knowledge on peat fire monitoring systems.Organochlorine pesticides (OCPs) have been used globally to boost food production. Although banned, due to their prolonged toxic effects but their residue still impacts the quality of primary and processed agricultural products. This study assesses the levels of residual OCPs (α,β,δ-HCH, heptachlor, heptachlor epoxide, chlordane, methoxychlor, aldrin, dieldrin, endrin, endrin aldehyde, endrin ketone, endosulfan, endosulfan sulfate, 1,1-dichloro-2,2-bis(p-chlorophenyl)ethane (DDD), 1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene (DDE), and 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (DDT)) in food commonly consumed in Lagos and Ibadan, Southwest, Nigeria. Health risk associated with human exposure via food intake was evaluated with a statistical predictive model. About 248 composite food samples from 8 categories were analyzed in Lagos and Ibadan. Sample extraction and clean-up were by QueChERS method and extracts injected into GC-μECD. ƩDDT concentration was highest in meat products, aquatic foods, dairy produanalysis method."Forest fires globally cause severe losses in vegetation, soil and habitats and inevitably have direct and indirect negative environmental impacts such as deforestation, climate change and drought. According to the official records, there has been an increase of 58% in the number of the forest fires in Turkey in the last 30 years, between 1988 and 2018. Therefore, it is vital to determine the forest fire risks in the country and develop more effective methodologies to mitigate them. From this point, in the first phase, forest fire risk map of Kütahya-Ören region was prepared via the analyses of a variety of spatial data using geographical information system capabilities. The visibility analysis for the current fire towers was also performed. The results showed that very-high and high-risk, moderate-risk and low-risk zones respectively comprised 36.86%, 60.39% and 2.76% of the total study area, and 82.8% of the region was visible from the towers. In the second phase of the study, remote sensing methods were utilized for the detection of the areas burned in October 2001 in Ören-Çamdibi region, which was officially recorded as 4 hectares. The results revealed that the actual amount of the burned area was 5.6 hectares, and 83% of the burned surfaces was classified as moderate-risk areas in the fire risk map, while 17% of it was that of very-high and high-risk zones.This study aims to provide a detailed overview of environmental Kuznets curve hypothesis using bibliometric analysis for the Web of Science (WOS) database. Our analysis provides an overview of research trends, journals and most influential authors. China has contributed the most scientific publications; followed by the USA, Turkey, and Pakistan. Muhammad Shahbaz, Beijing Institute of Technology, and Environmental Science and Pollution Research are the most productive author, research institute, and research journal in EKC publications. Trend analysis of researchers, academic and country-level, reveal that publications in the environmental Kuznets curve have upward trend; also, cocitation analysis indicates that EKC publications are closely related. "Economic growth and income inequality" (1955) by Simon Kuznets is considered to be the basic literature, and "environmental Kuznets curve hypothesis A Survey" by Dinda (2004) is the most cited research article in the literature. Keywords and abstracts analysis further reveals that carbon emissions, renewable energy, energy consumption, economic growth, and sustainable development are the hot topics in current literature. We propose that joint research projects between industrial and emerging economies will promote research activities.Biosorption is an ingenious technique that uses biological materials to acquire trace metal ions from wastewater. In the present study, the ability of Colocasia esculenta stem biomass was explored for the biosorption of toxic trace metals. The maximum removal was observed for arsenate (As5+) with 58.63%, followed by chromium (Cr6+) with 56.56%, and cadmium (Cd2+) with 41.2%. However, for copper (Cu2+), nickel (Ni2+), and zinc (Zn2+), low adsorption was observed. Batch sorption tests revealed that adsorbent dosage of 0.5g, 0.5g, and 0.3g; time of 10 h, 4 h, and 10 h; room temperature range of 25-30°C; pH range of 7.0-4.5; and initial concentration of 30 μg/L, 20 mg/L, and 30 mg/L were the optimum conditions for the removal of As5+, Cr6+, and Cd2+, respectively. https://www.selleckchem.com/products/gsk-2837808A.html Scanning electron microscope and energy-dispersive X-ray spectroscopy (SEM-EDX) analysis of Colocasia esculenta stem biomass before and after adsorption revealed that the trace metals successfully get adsorbed on the surface of the biosorbent. The equilibrium data fitted well with the adsorption isotherm model of Langmuir (for As5+, Cr6+, and Cd2+), Dubinin-Radushkevich (for As5+ and Cr6+), and Flory-Huggins (for Cd2+), and the kinetic data of As5+, Cr6+, and Cd2+ biosorption were best described by pseudo-second-order kinetic model. Thermodynamic studies revealed that the adsorption process for all concerned trace metals acts in a spontaneous manner and is endothermic in nature. Thus, the use of Colocasia esculenta stem biomass proved to be an efficient and economical alternative for the treatment of effluents contaminated with these trace metals.