Traditional Chinese Medicine (TCM) formulae contain abundant chemical ingredients, leading to the development of high quality TCM productions be difficult. With different pharmacokinetic and pharmacodynamic parameters of the chemical ingredients in a TCM formula, it is desirable to simultaneously identify multiple ingredients for accurate quality control. In the present study, we introduce a novel strategy for TCM formula quality assessment by using the combined methods of the extraction condition optimization, quantitative analyzation, and response surface evaluation. We used Bao-Yuan Capsule (BYC), a patented TCM production, as a model system for quality assessment. We applied matrix solid phase dispersion (MSPD) as a rapid and efficient method to prepare sample extraction. Q-Trap-MS related accurate methods were applied to simultaneously analyze 13 bioactive constituents as bioactive markers in the BYC. Those methods revealed a high sensitivity to detect the target compounds at the concentrations ranging from 0.12 to 0.95 ng/mL for flavonoids and ginsenosides whose recoveries were ranged from 91.93%-105.84%. We employed the response surface methodology to optimize the extraction conditions including dispersant/sample ratio, solvent concentration, and elution volume based on the content of ginsenosides as the test samples. The results showed the high extraction efficiency of ginsenosides with dispersant/sample ratio at 3/4, methanol concentration at 85 %, and elution volume at 15 mL. Taken together, we conclude that the combination strategy of MSPD and response surface evaluation for simultaneous detections of multiple bioactive constituents could be a powerful and efficient method for performing accurately quality control of complex TCM production preparations.A liquid chromatography-tandem mass spectrometry (LC-MS/MS) method has been developed and validated for the simultaneous quantification of apomorphine and its metabolites apomorphine sulfate and norapomorphine in human plasma for supporting clinical development of a novel apomorphine sublingual thin film (APL) for the treatment of Parkinson's disease. Analytes and internal standards (IS) were extracted from human plasma by Oasis HLB SPE cartridge, followed by a reversed phase LC-MS/MS analysis using multiple reaction monitoring (MRM) in positive mode (m/z 268 → 237 for apomorphine, 348 → 237 for apomorphine sulfate, and 348 → 237 for norapomorphine). Stable isotope-labeled compounds were used as IS for respective analytes. The validated curve ranges were 0.02-20 ng/mL, 10-1000 ng/mL, and 0.5-20 ng/mL for apomorphine, apomorphine sulfate and norapomorphine, respectively. Extraction recoveries were found to be 73.4 % (apomorphine), 81.1 % (apomorphine sulfate), and 58.6 % (norapomorphine). Established long-term plasma frozen storage stabilities were 504 days at -20 °C and276 days at -60 °C, respectively. The method has been successfully used for analyzing pharmacokinetics (PK) samples collected from a comparative bioavailability study of APL and the marketed apomorphine subcutaneous (s.c.) product Apo-go®. https://www.selleckchem.com/products/Decitabine.html The results demonstrated that the 15-mg APL film administrated via sublingual produced comparable PK characteristics of apomorphine when compared to the commercial product Apo-go (2-mg) via s.c. administration, hence establishing the dose regimen for this sublingual formulation. It was also noticed that the sublingual 15-mg APL film produced a significantly higher apomorphine sulfate metabolite level than the 2-mg s.c. Apo-go, and both treatments yielded a negligible level of norapomorphine metabolite in humans.Chronic obstructive pulmonary disease (COPD), characterized by intermittent exacerbations and clinical subphenotypes like emphysema and chronic bronchitis, poses a significant risk of lung cancer (LC) development. Metabolomic studies of COPD are scarce, and those of LC patients with COPD subphenotypes have not been investigated. To study metabolite profile alteration in LC patients with different COPD subphenotypes, lung paracancer tissue from 10 LC (CON) patients, 10 LC patients with emphysema (E), and 9 LC patients with chronic bronchitis (CB) were analyzed using gas chromatography-mass spectrometry. Multivariate analysis indicated a distinct separation between LC patients with COPD subphenotypes and LC patients. Overall, 60, 55, 33 and 63 differential metabolites (DM) were identified in comparisons between CB vs CON, E vs CON, CB vs E, and CB + E vs CON, respectively, and of these, 8 DM were shared in all comparisons. Among the high altered metabolites, E samples showed higher 'acetol' than CON samples, and lower 'azelaic acid', '3-methylglutaric acid' and 'allose'. CB samples showed higher 'turanose' and 'o-phosphoserine' and lower 'anandamide' than CON and E samples. In CB and E samples, 'galactonic acid', '2-mercaptoethanesulfonic acid', 'D-alanyl-D-alanine' '3-methylglutaric acid', 'glycine', 'L-4-Hydroxyphenylglycine' and 'O-phosphonothreonine' had common alteration trends compared with those of CON samples. 'Glycine', 'L-4-Hydroxyphenylglycine' and 'O-phosphonothreonine' were significantly enriched in glycine, serine and threonine metabolism pathways. The total differential metabolites detected were remarkably altered in pyrimidine, beta-alanine and purine metabolism. Our study provided altered DM patterns of lung paracancer tissue, the key metabolites and their enriched metabolic pathways in LC patients with different COPD subphenotypes. Kawasaki disease (KD) is an acute febrile and eruptive disease with systemic vasculitis predominantly affecting young East Asian children. Recent reports showed that children with KD-like disease from KD low prevalence regions had positive SARS-CoV-2 serology despite a negative SARS-CoV-2 polymerase chain reaction (PCR) in respiratory samples. To describe 3 pediatric Kawasaki Disease patients with false positive SARS-CoV-2 serology. We retrospectively recruited children with KD diagnosed during the COVID-19 outbreak in Hong Kong. Clinical characteristics and laboratory test results including SARS-CoV-2 PCR results were retrieved. We performed a microparticle-based immunoassay for the detection of IgG against nucleoprotein (NP) and spike protein receptor binding domain (RBD), and a microneutralization assay for the detection of neutralizing antibodies. Three Chinese children with typical KD were identified. They had no epidemiological links with COVID-19 patients and tested negative for SARS-CoV-2 NPA PCR.