https://www.selleckchem.com/MEK.html In conclusion, diclofenac modified the root development of A. thaliana via interfering with the activities of natural auxin. These results indicate that diclofenac could potentially act as an environmental contaminant disturbing the natural developmental processes of plants.Graphitic carbon nitride is considered as one of the promising photocatalysts for pollution elimination from wastewater. Manipulating the microstructure of carbon nitride remains a challengeable task, which is essential for improving light absorption, separating photogenerated carrier and creating reactive sites. Herein, a carbon vacancy modified hierarchical carbon nitride microrod (CN1.5) has been prepared templated from a melamine-NH2OH·HCl complex. The hierarchical microrods are demonstrated to be comprised of interconnected nanosheets with rich carbon vacancies, which endows it with high specific surface area, enhanced light utilization efficiency, available reactive sites, improved charge carrier separation and numerous mass-transport channels. The resultant photocatalyst CN1.5 exhibits an excellent photodegradation efficiency of 87.9% towards tetracycline under visible light irradiation. The remarkable apparent rate constant of 4.91 × 10-2 min-1 is 7.3 times higher than that of bulk CN. In addition, the degradation pathways are deduced base on the observation of degradation intermediates generating in the photocatalytic process. Mechanism investigation indicates that the major contribution for photodegradation is attributed to ·O2-, 1O2 and H2O2 species. This work provides new insights into advancing carbon nitride's microstructure to improve photocatalytic degradation performance for highly efficient antibiotic removal and environment remediation.In this study, Fenton-like chain reaction is constructed by coupling nanoscale tungsten powders (nW0) and peroxydisulfate (PDS). The nanoscale tungsten powders/peroxydisulfate (nW0/PDS) system exhibits a high