https://www.selleckchem.com/products/gdc-0077.html New dabsyl-thiophene based receptor DABT and its mercury complex DABT-Hg is reported as a colorimetric sensor for rapid and sensitive detection of trace amount of water in aprotic solvents. Based on intramolecular charge transfer in the excited state, the receptor dabsyl-thiophene (yellow color) binds with the mercury ions (magenta color) to stimulate a colorimetric response. The mercury complex is used as a moisture sensor in THF, acetone, and acetonitrile due to its instability in moisture containing organic solvents. The probe exhibits higher sensitivity towards water in THF (LOD = 0.0041% w/w), acetone (LOD = 0.0144% w/w) and acetonitrile (LOD = 0.1008% w/w). The dissociation of mercury from probe DABT-Hg in the presence of water is accountable for the colorimetric response as proven by the 1H NMR and ESI-MS studies. DABT-Hg is the first mercury based complex for the detection of moisture in organic solvents. Test paper strip and PVA thin film doped with the probe were successfully used to detect moisture content in organic solvents. DABT-Hg incorporated alginate beads are prepared to determine the water content in triethylamine and ethylene glycol. Portable test cassettes are developed for the on-site detection of distilled and undistilled wet solvents in the chemical laboratory through naked-eye detection.Global profiling of the metabolome and lipidome of specific brain regions is essential to understanding the cellular and molecular mechanisms regulating brain activity. Given the limited amount of starting material, conventional mouse studies comparing brain regions have mainly targeted a set of known metabolites in large brain regions (e.g., cerebrum, cortex). In this work, we developed a multimodal analytical pipeline enabling parallel analyses of metabolomic and lipidomic profiles from anatomically distinct mouse brain regions starting with less than 0.2 mg of protein content. This analytical pipeline is c