An analytical method has been developed and validated for the determination of six estrogens and estrogen mimics, namely estriol (E3), bisphenol A (BPA), 17β-estradiol (E2), estrone (E1), ethynyl estradiol (EE2) and dienestrol (DIE), with frequent occurrence in the natural environment. Solid phase extraction coupled with liquid chromatography tandem mass spectrometry (SPE-LC-MS/MS) using electrospray ionization (ESI) in a negative mode was applied to concentration, identification, and quantification of estrogens and estrogen mimics. The SPE conditions were optimized as the selection of C18 as cartridges and MeOH as an eluent, and the control of solution pH at 9.0. The method was validated by satisfactory recoveries (80-130%) and intra-day and inter-day precision ( 0.996). The limits of detection (LODs) for six target estrogenic compounds ranged between 2.5 and 19.2 ng/L. The effects of matrix background on the determination were evaluated in terms of LODs, LOQs, analyte recovery, and slopes of calibration curves in five different water matrices. Matrix effects by tap water were negligible. However, both matrix suppression and enhancement (i.e., E3, E1, DIE) were observed in surface water and wastewater. The positive correlation between LODs and TOC in various water matrices indicated the negative effect of organic pollutants on the method sensitivity. The sum of target estrogenic compounds in environmental samples were within 17-9462 ng/L. Despite the proliferation of digital interventions such as Electronic Immunization Registries (EIR), currently, there is little evidence regarding the use of EIR data to improve immunization outcomes in resource-constrained settings. To achieve the Sustainable Development Goal (SDG) of ensuring healthy lives and well-being for all ages, particularly for newborns and children under the age of 5 (goal 3b), it is essential to generate and use quality data for evidence-based decision making to overcome barriers inherent in immunization systems. In Pakistan, only 66 % of children receive all basic vaccinations, and in Sindh province, the number is even lower at 49 %. In 2012, IRD developed and piloted Zindagi Mehfooz (Safe Life; ZM) ElR, an Android-based platform that records and analyses individual-level child data in real-time. In 2017 in collaboration with Expanded Programme for Immunization (EPI) Sindh, ZM was scaled-up across the entire Sindh province and is currently being used by 2521 government vaccinato for targeted efforts. The big data for vaccines generated through EIRs is a powerful tool to monitor immunization work-force and ensure chronically missed communities are identified and covered through targeted strategies. Geospatial data availability and analysis is changing the way EPI review meetings occur with stakeholders, taking data-driven decisions for better planning and resource allocation. In the fight against COVID-19 pandemic, as governments gradually begin to shift from containing the outbreak to strategizing a plan for sustaining the essential health services, the countries that will emerge most successful are likely the ones who can best use technology and real-time data for targeted efforts.Myeloid-derived suppressor cells (MDSCs) impair protective anti-tumor immunity and remain major obstacles that stymie the effectiveness of promising cancer therapies. Diverse tumor-derived stressors galvanize the differentiation, intra-tumoral expansion, and immunomodulatory function of MDSCs. These tumor-associated 'axes of stress' underwrite the immunosuppressive programming of MDSCs in cancer and contribute to the phenotypic/functional heterogeneity that characterize tumor-MDSCs. This review discusses various tumor-associated axes of stress that direct MDSC development, accumulation, and immunosuppressive function, as well as current strategies aimed at overcoming the detrimental impact of MDSCs in cancer. To better understand the constellation of signals directing MDSC biology, we herein summarize the pivotal roles, signaling mediators, and effects of reactive oxygen/nitrogen species-related stress, chronic inflammatory stress, hypoxia-linked stress, endoplasmic reticulum stress, metabolic stress, and therapy-associated stress on MDSCs. Although therapeutic targeting of these processes remains mostly pre-clinical, intercepting signaling through the axes of stress could overcome MDSC-related immune suppression in tumor-bearing hosts.Co-occurrence of abiotic stresses, especially drought and salinity, is a natural phenomenon in field conditions and is worse for crop production than any single stress. Nowadays, rigorous methods of meta-analysis and systems biology have made it possible to perform cross-study comparisons of single stress experiments, which can uncover main overlapping mechanisms underlying tolerance to combined stress. In this study, a meta-analysis of RNA-Seq data was conducted to obtain the overlapping gene network of drought and salinity stresses in barley (Hordeum vulgare L.), which identified Rubisco activase A (RcaA) as a hub gene in the dual-stress response. Thereafter, a greenhouse experiment was carried out using two barley genotypes with different abiotic stress tolerance and evaluated several physiochemical properties as well as the expression profile and protein activity of RcaA. https://www.selleckchem.com/products/atezolizumab.html Finally, machine learning analysis was applied to uncover relationships among combined stress tolerance and evaluated properties. We identified 441 genes which were differentially expressed under both drought and salinity stress. Results revealed that the photosynthesis pathway and, in particular, the RcaA gene are major components of the dual-stress responsive transcriptome. Comparative physiochemical and molecular evaluations further confirmed that enhanced photosynthesis capability, mainly through regulation of RcaA expression and activity as well as accumulation of proline content, have a significant association with combined drought and salinity stress tolerance in barley. Overall, our results clarify the importance of RcaA in combined stress tolerance and may provide new insights for future investigations.