Our findings demonstrate the importance of incorporating greater realism into road-effect zones and considering the ubiquity of road pollution in global environmental issues. We used Great Britain as a study area, but the findings likely apply to other densely populated regions at present, and to many additional regions in the future due to the predicted rapid expansion of the global road network.Microplastics in the environment occur in different sizes and shapes and are made of various polymers. Therefore, they also considerably differ in their properties and ecotoxicity. However, the majority of microplastics research uses pre-made spherical microplastics, which practically do not exist in the environment. Our work focused on a comprehensive study of six different types of microplastic that were prepared to simulate common microplastics found in the environment. All types of microplastics where chemically and physically characterized using Fourier-transform infrared spectroscopy, thermal analysis, field-emission scanning electron microscopy, optical microscopy and laser diffraction analysis. The specific surface area was determined using the BET method. Furthermore, effects of microplastics and microplastic leachates on a common duckweed (Lemna minor) were evaluated. All tested microplastics did not affect specific growth rate and chlorophyll a content in duckweed, while microplastics with a rough surface and sharp edges caused a significant reduction of duckweed root length. Microplastics made of Bakelite also showed an intensive leaching, which increased their ecotoxicity potential. Natural particles used as a control did not have any negative effect on duckweed. Overall, microplastic particles have significantly different ecotoxicity profiles depending on their physico-chemical properties. Therefore, the testing of environmentally relevant particles and their proper characterization, as well as the testing of microplastic leaching properties, is crucial for understanding of microplastics ecotoxicological potential.In Colombia, the beef production chain accounts for approximately 11.6 million cattle heads and annually produces 933 million kg of the beef carcass. There are no life cycle assessment (LCA) studies that have evaluated the environmental performance of Colombian beef systems. The present study aimed to estimate the carbon footprint (CF), non-renewable energy use, and land use of 251 cow-calf and 275 fattening farms in Colombia. https://www.selleckchem.com/products/FK-506-(Tacrolimus).html The study also aimed to identify the main hotspots of adverse environmental impacts and propose possible mitigation options and their cost-effectiveness. The impact categories were estimated using the 2006 IPCC and the 2019 Refinement to 2006 IPCC guidelines, databases, and locally estimated emission factors. The functional units used were 1 kg fat and protein corrected milk (FPCM) and 1 kg live weight gain (LWG), leaving the farm gate. Three methods of allocating environmental burdens to meat and milk products were applied economic, energy, and mass allocation. The adoption of improved pastures was considered a mitigation measure, and an economic assessment was performed to estimate the relative cost-effectiveness of its establishment. A principal component multivariate analysis and a Hierarchical Clustering on Principal Components were performed. The economic allocation method assigned a greater environmental burden to meat (83%), followed by energy content (80%) and mass production (73%). The largest sources of GHG emissions were enteric fermentation and manure deposited on pasture. Both cow-calf and fattening systems had a cluster of farms with better productivity, pasture and cattle management practices, and environmental performance. The CF for meat could be reduced by 33 to 56% for cow-calf and 21 to 25% for fattening farms, by adopting improved pastures. Therefore, our results suggest that GHG emissions can be reduced by adopting improved pastures, better agricultural management practices, efficient fertilizer usage, using the optimal stocking rate, and increasing productivity.Aeration of wetland soils containing iron (Fe) sulfides can cause strong acidification due to the generation of large amounts of sulfuric acid and formation of Fe oxyhydroxy sulfate phases such as jarosite. Remediation by re-establishment of anoxic conditions promotes jarosite transformation to Fe oxyhydroxides and/or Fe sulfides, but the driving conditions and mechanisms are largely unresolved. We investigated a sandy, jarosite-containing soil (initial pH = 3.0, Eh ~600 mV) in a laboratory incubation experiment under submerged conditions, either with or without wheat straw addition. Additionally, a model soil composed of synthesized jarosite mixed with quartz sand was used. Eh and pH values were monitored weekly. Solution concentrations of total dissolved organic carbon, Fe, S, and K as well as proportions of Fe2+ and SO42- were analysed at the end of the experiment. Sequential Fe extraction, X-ray diffraction, and Mössbauer spectroscopy were used to characterize the mineral composition of the soils. Only when straw was added to natural and artificial sulfuric soils, the pH increased up to 6.5, and Eh decreased to approx. 0 mV. The release of Fe (mainly Fe2+), K, and S (mainly SO42-) into the soil solution indicated redox- and pH-induced dissolution of jarosite. Mineralogical analyses confirmed jarosite losses in both soils. While lepidocrocite formed in the natural sulfuric soil, goethite was formed in the artificial sulfuric soil. Both soils showed also increases in non-sulfidized, probably organically associated Fe2+/Fe3+, but no (re-)formation of Fe sulfides. Unlike Fe sulfides, the formed Fe oxyhydroxides are not prone to support re-acidification in the case of future aeration. Thus, inducing moderately reductive conditions by controlled supply of organic matter could be a promising way for remediation of soils and sediments acidified by oxidation of sulfuric materials.During 2020, the COVID-19 pandemic resulted in a widespread lockdown in many cities in China. In this study, we assessed the impact of changes in human activities on air quality during the COVID-19 pandemic by determining the relationships between air quality, traffic volume, and meteorological conditions. The megacities of Wuhan, Beijing, Shanghai, and Guangzhou were selected as the study area, and the variation trends of air pollutants for the period January-May between 2016 and 2020 were analyzed. The passenger volume of public transportation (PVPT) and the passenger volume of taxis (PVT) along with data on precipitation, temperature, relative humidity, wind speed, and boundary layer height were used to identify and quantify the driving force of the air pollution variation. The results showed that the change rates of fine particulate matter (PM2.5), NO2, and SO2 before and during the lockdown in the four megacities ranged from -49.9% to 78.2% (average -9.4% ± 59.3%), -55.4% to -32.3% (average -43.0% ± 9.7%), and - 21.