https://www.selleckchem.com/products/nu7441.html The results of SVM showed that the highest accuracy was 97.22% and the specificity and sensitivity were 95.65 and 100%, respectively when the pretreatment method of the first derivative was used, and the best model parameters were c = 18.76 and g = 0.008583.The results of the aquaphotomics model showed clear differences in the 1,400-1,500 nm region, and the number of hydrogen bonds in water species (1,408, 1,416, 1,462, and 1,522 nm) was evidently correlated with the occurrence and development of diabetes. The number of hydrogen bonds was the smallest in the healthy group and the largest in the diabetes group. The suggested reason is that the water matrix of blood changes with the worsening of blood glucose metabolic dysfunction. The number of hydrogen bonds could be used as biomarkers for the early diagnosis of diabetes. The result show that it is effective and feasible to establish an accurate and rapid early diagnosis model of diabetes via NIRS combined with SVM and aquaphotomics.The dye industry is one of the largest water consuming industries, and at the same time generates large quantities of wastewaters. The resulting wastewaters require proper treatment before discharge, because the dye contents have a negative effect on the water body and organisms present in it. The most efficient treatment method for water containing dyes is represented by adsorption processes. The challenge with these adsorption processes is to develop new, efficient, viable, and economic adsorbent materials. Therefore, in the present paper, the performance of Zn2Al-layered double hydroxide, prepared from an industrial waste (zinc ash) as a zinc source, was investigated in the Orange II dye adsorption process. The Zn2Al-layered double hydroxide prepared from secondary sources presents similar morphological and structural characteristics as those prepared from analytical grade reagents. The influence of initial dye concentration, adsorption