Functional photoacoustic imaging of the placenta could provide an innovative tool to diagnose preeclampsia, monitor fetal growth restriction, and determine the developmental impacts of gestational diabetes. https://www.selleckchem.com/products/ly333531.html However, transabdominal photoacoustic imaging is limited in imaging depth due to the tissue's scattering and absorption of light. The aim of this paper was to investigate the impact of geometry and wavelength on transabdominal light delivery. Our methods included the development of a multilayer model of the abdominal tissue and simulation of the light propagation using Monte Carlo methods. A bifurcated light source with varying incident angle of light, distance between light beams, and beam area was simulated to analyze the effect of light delivery geometry on the fluence distribution at depth. The impact of wavelength and the effects of variable thicknesses of adipose tissue and muscle were also studied. Our results showed that the beam area plays a major role in improving the delivery of light to deep tissue, in comparison to light incidence angle or distance between the bifurcated fibers. Longer wavelengths, with incident fluence at the maximum permissible exposure limit, also increases fluence within deeper tissue. We validated our simulations using a commercially available light delivery system and ex vivo human placental tissue. Additionally, we compared our optimized light delivery to a commercially available light delivery system, and conclude that our optimized geometry could improve imaging depth more than 1.6×, bringing the imaging depth to within the needed range for transabdominal imaging of the human placenta. There is ongoing debate concerning the classification of antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis. That is, whether classification should be based on the serotype (proteinase 3 (PR3)- or myeloperoxidase (MPO)-ANCA) or on the clinical phenotype (granulomatosis with polyangiitis (GPA) or microscopic polyangiitis (MPA)). To add clarity, this review focused on integration of the most recent literature. Large clinical trials have provided evidence that a serology-based risk assessment for relapses is more predictive than distinction based on the phenotype. Research conducted in the past decade indicated that a serology-based approach more closely resembles the genetic associations, the clinical presentation (i.e., lung involvement), biomarker biology, treatment response, and is also predicting comorbidities (such as cardiovascular death). Our review highlights that a serology-based approach could replace a phenotype-based approach to classify ANCA-associated vasculitides. In future, clinical trials and observational studies will presumably focus on this distinction and, as such, translate into a "personalized medicine." Large clinical trials have provided evidence that a serology-based risk assessment for relapses is more predictive than distinction based on the phenotype. Research conducted in the past decade indicated that a serology-based approach more closely resembles the genetic associations, the clinical presentation (i.e., lung involvement), biomarker biology, treatment response, and is also predicting comorbidities (such as cardiovascular death). Our review highlights that a serology-based approach could replace a phenotype-based approach to classify ANCA-associated vasculitides. In future, clinical trials and observational studies will presumably focus on this distinction and, as such, translate into a "personalized medicine."Ticks will diminish productivity among farm animals and transmit zoonotic diseases. We conducted a study to identify tick species infesting slaughter bulls from Adama City and to screen them for tick-borne pathogens. In 2016, 291 ticks were collected from 37 bulls in Adama, which were ready for slaughter. Ticks were identified morphologically. Total genomic DNA was extracted from ticks and used to test for Rickettsia spp. with real-time PCR. Species identification was done by phylogenetic analysis using sequencing that targeted the 23S-5S intergenic spacer region and ompA genes. Four tick species from two genera, Amblyomma and Rhipicephalus, were identified. Amblyomma cohaerens was the dominant species (n = 241, 82.8%), followed by Amblyomma variegatum (n = 22, 7.5%), Rhipicephalus pulchellus (n = 19, 6.5%), and Rhipicephalus decoloratus (n = 9, 3.0%). Among all ticks, 32 (11%) were positive for Rickettsia spp. and 15 (5.2%) of these were identified as R. africae comprising at least two genetic clades, occurring in A. variegatum (n = 10) and A. cohaerens (n = 5). The remainder of Rickettsia-positive samples could not be amplified due to low DNA yield. Furthermore, another 15 (5.2%) samples carried other pathogenic bacteria Ehrlichia ruminantium (n = 9; 3.1%) in A. cohaerens, Ehrlichia sp. (n = 3; 1%) in Rh. pulchellus and A. cohaerens, Anaplasma sp. (n = 1; 0.5%) in A. cohaerens, and Neoehrlichia mikurensis (n = 2; 0.7%) in A. cohaerens. All ticks were negative for Bartonella spp., Babesia spp., Theileria spp., and Hepatozoon spp. We reported for the first time E. ruminatium, N. mikurensis, Ehrlichia sp., and Anaplasma sp. in A. cohaerens. Medically and veterinarily important pathogens were mostly detected from A. variegatum and A. cohaerens. These data are relevant for a One-health approach for monitoring and prevention of tick-borne disease transmission.Benzo[a]pyrene (BaP) is a polycyclic aromatic hydrocarbon, highly persistent and toxic and a widespread environmental pollutant. Although various technologies have been developed to remove BaP from the environment, its sorption through solid matrixes has received increasing attention due to cost-effectiveness. The present research compares the adsorption capacity of Haplic Chernozem, granular activated carbon and biochar in relation to BaP from water solution. Laboratory experiments with different initial BaP concentrations in the liquid phase and different ratios of the solid and liquid phases show that Freundlich model describes well the adsorption isotherms of BaP by the soil and both sorbents. Moreover, the BaP isotherm sorption by the Haplic Chernozem is better illustrated by the Freundlich model than the Langmuir equation. The results reveal that the sorption capacity of the carbonaceous adsorbents at a ratio 120 (solid to liquid phases) is orders of magnitude higher (13 368 ng mL-1 of activated carbon and 3 578 ng mL-1 of biochar) compared to the soil (57.