Overall, our studies provide a powerful approach for mapping GAG-protein interaction networks, revealing new potential functions for these polysaccharides and linking them to diseases such as Alzheimer's and autism.With the help of retrosynthetic analysis, we have realized the highly anticipated stereoselective synthesis of a topologically chiral Solomon link, by taking advantage of coordination-driven self-assembly and chiral induction by axially chiral ligands. Combination of the ligands (R or S)-2,2'-diethoxy-1,1'-binaphthyl-6,6'-bis(4-vinylpyridine) (R-L or S-L) with the binuclear iridium complex [Cp*2Ir2(DHBQ)(OTf)2] (Ir-B(OTf)2, H2DHBQ = 2,5-dihydroxy-1,4-benzoquinone) allows diastereoselective synthesis of the topological enantiomers P (Ir-1P) or M (Ir-1M) of a Solomon link, respectively. The main driving force for the formation of the Solomon link is the π-π interactions between chiral ligands.As an effective solution toward the establishment of a sustainable society, the reductive transformation of CO2 into value-added products is certainly important and imperative. Herein, we report a porphyrin metal-organic framework composite Au@Ir-PCN-222, which is obtained through the in situ formation of Au nanoparticles in the coordination interspaces of Ir-PCN-222. Catalytic results show that Au@Ir-PCN-222 is highly efficient for CO2 reduction and aminolysis, giving rise to formamides in high yields and selectivities under room temperature and atmospheric pressure. Mechanistic studies disclose that the high efficiency of Au@Ir-PCN-222 is due to the synergistic catalysis of Au NPs and Ir-PCN-222, in which Au NPs can adsorb CO2 molecules on their surfaces and then increase the CO2 concentration in the cavities of the framework, and at the same time, Au NPs transfer electrons to Ir-porphyrin units and therefore increase the interactions with CO2 molecules.Flexible metal-organic frameworks (MOFs) undergo structural transformations in response to physical and chemical stimuli. This is hard to control because of feedback between guest uptake and host structure change. We report a family of flexible MOFs based on derivatized amino acid linkers. Their porosity consists of a one-dimensional channel connected to three peripheral pockets. This network structure amplifies small local changes in linker conformation, which are strongly coupled to the guest packing in and the shape of the peripheral pockets, to afford large changes in the global pore geometry that can, for example, segment the pore into four isolated components. The synergy among pore volume, guest packing, and linker conformation that characterizes this family of structures can be determined by the amino acid side chain, because it is repositioned by linker torsion. The resulting control optimizes noncovalent interactions to differentiate the uptake and structure response of host-guest pairs with similar chemistries.Nitrogen dioxide (NO2) is a toxic air pollutant, and efficient abatement technologies are important to mitigate the many associated health and environmental problems. Here, we report the reactive adsorption of NO2 in a redox-active metal-organic framework (MOF), MFM-300(V). Adsorption of NO2 induces the oxidation of V(III) to V(IV) centers in MFM-300(V), and this is accompanied by the reduction of adsorbed NO2 to NO and the release of water via deprotonation of the framework hydroxyl groups, as confirmed by synchrotron X-ray diffraction and various experimental techniques. https://www.selleckchem.com/ The efficient packing of NO2·N2O4∞ chains in the pores of MFM-300(VIV) results in a high isothermal NO2 uptake of 13.0 mmol g-1 at 298 K and 1.0 bar and is retained for multiple adsorption-desorption cycles. This work will inspire the design of redox-active sorbents that exhibit reductive adsorption of NO2 for the elimination of air pollutants.The rational design of multifunctional catalysts that use non-noble metals to facilitate the interconversion between H2, O2, and H2O is an intense area of investigation. Bimetallic nanosystems with highly tunable electronic, structural, and catalytic properties that depend on their composition, structure, and size have attracted considerable attention. Herein, we report the synthesis of bimetallic nickel-copper (NiCu) alloy nanoparticles confined in a sp2 carbon framework that exhibits trifunctional catalytic properties toward hydrogen evolution (HER), oxygen reduction (ORR), and oxygen evolution (OER) reactions. The electrocatalytic functions of the NiCu nanoalloys were experimentally and theoretically correlated with the composition-dependent local structural distortion of the bimetallic lattice at the nanoparticle surfaces. Our study demonstrated a downshift of the d-band of the catalysts that adjusts the binding energies of the intermediate catalytic species. XPS analysis revealed that the binding energy for Ni 2p3/2 band of the Ni0.25Cu0.75/C nanoparticles was shifted ∼3 times compared to other bimetallic systems, and this was correlated to the high electrocatalytic activity observed. Interestingly, the bimetallic Ni0.25Cu0.75/C catalyst surpassed the OER performance of RuO2 benchmark catalyst exhibiting a small onset potential of 1.44 V vs RHE and an overpotential of 400 mV at 10 mA·cm-2 as well as the electrochemical long-term stability of commercial RuO2 and Pt catalysts and kept at least 90% of the initial current applied after 20 000 s for the OER/ORR/HER reactions. This study reveals significant insight about the structure-function relationship for non-noble bimetallic nanostructures with multifunctional electrocatalytic properties.The mechanism of CF2 transfer from TMSCF3 (1), mediated by TBAT (2-12 mol %) or by NaI (5-20 mol %), has been investigated by in situ/stopped-flow 19F NMR spectroscopic analysis of the kinetics of alkene difluorocyclopropanation and competing TFE/c-C3F6/homologous perfluoroanion generation, 13C/2H KIEs, LFERs, CF2 transfer efficiency and selectivity, the effect of inhibitors, and density functional theory (DFT) calculations. The reactions evolve with profoundly different kinetics, undergoing autoinhibition (TBAT) or quasi-stochastic autoacceleration (NaI) and cogenerating perfluoroalkene side products. An overarching mechanism involving direct and indirect fluoride transfer from a CF3 anionoid to TMSCF3 (1) has been elucidated. It allows rationalization of why the NaI-mediated process is more effective for less-reactive alkenes and alkynes, why a large excess of TMSCF3 (1) is required in all cases, and why slow-addition protocols can be of benefit. Issues relating to exothermicity, toxicity, and scale-up are also noted.