https://www.selleckchem.com/products/crenolanib-cp-868596.html AbstractPhenotypic plasticity is expected to facilitate the persistence of natural populations as global change progresses. The attributes of fluctuating environments that favor the evolution of plasticity have received extensive theoretical investigation, yet empirical validation of these findings is still in its infancy. Here, we combine high-resolution environmental data with a laboratory-based experiment to explore the influence of habitat pH fluctuation dynamics on the plasticity of gene expression in two populations of the Mediterranean mussel, Mytilus galloprovincialis. We linked differences in the magnitude and predictability of pH fluctuations in two habitats to population-specific gene expression profiles in ambient and stressful pH treatments. Our results demonstrate population-based differentiation in gene expression plasticity, whereby mussels native to a habitat exhibiting a large magnitude of pH fluctuations with low predictability display reduced phenotypic plasticity between experimentally imposed pH treatments. This work validates recent theoretical findings on evolution in fluctuating environments, suggesting that the predictability of fluctuating selection pressures may play a predominant role in shaping the phenotypic variation observed across natural populations.AbstractModels of optimal group size need to identify the currency that correctly captures the fitness consequences of foraging. Although daily intake or daily net energy gain per animal are widely used as currencies, they are not ideal. They predict that all available time should be spent hunting and do not reflect performance during a hunt. We argue that the net rate while hunting is a better currency. Using an example based on the African wild dog, we illustrate the difference between maximizing daily net energy and net rate. Using the same example, we show that if foraging is limited by constraints on energy expenditure,