https://www.selleckchem.com/products/7acc2.html The analyses are applied to ensembles of cascade QMD simulations in which the four element types in PDMS are selectively excited in primary knock-on atom events. Our approach reveals a much higher degree of combinatorial complexity in this system than was inferred through radiolysis experiments. Probabilities are extracted for radiation-induced network changes including formation of branch points, carbon linkages, cycles, bond scissions, and carbon uptake into the Si-O siloxane backbone network. The general analysis framework presented here is readily extendable to modeling chemical degradation of other polymers and molecular materials and provides a basis for future quantum-informed multiscale modeling of radiation damage.The self-assembly of biological molecules is an important pathway to understanding the molecular basis of complex metabolic events. The presence of a cosolvent in an aqueous solution during the self-assembly process can promote the formation of kinetically trapped metastable intermediates. In nature, a category of cosolvents termed osmolytes can work to strengthen the hydrogen-bond network of water such that the native states of certain proteins are favored, thus modulating their function and stability. However, identifying cosolvents that act as osmolytes in biomimetic applications, such as the self-assembly of soft materials, remains challenging. The present work examined the effects of ethanol (EtOH) and acetonitrile (ACN) as cosolvents on the self-assembly of the amphiphilic polypeptide PSar30-(l-Leu-Aib)6 (S30L12), which incorporates α-helical hydrophobic blocks, in aqueous solution. The results provided a direct observation of morphological behavior of S30L12 as a function of solvent composition. Morphological transitions were investigated using transmission electron microscopy, while the packing of peptide molecules was assessed using circular dichroism analyses and evaluations of membrane flu