https://www.selleckchem.com/products/n-butyl-n-4-hydroxybutyl-nitrosamine.html Lanthanide-based, Förster resonance energy transfer (LRET) biosensors enabled sensitive, time-gated luminescence (TGL) imaging or multiwell plate analysis of protein-protein interactions (PPIs) in living cells. We prepared stable cell lines that expressed polypeptides composed of an alpha helical linker flanked by a Tb(III) complex-binding domain, GFP, and two interacting domains at each terminus. The PPIs examined included those between FKBP12 and the rapamycin-binding domain of m-Tor (FRB) and between p53 (1-92) and HDM2 (1-128). TGL microscopy revealed dramatic differences (>500%) in donor- or acceptor-denominated, Tb(III)-to-GFP LRET ratios between open (unbound) and closed (bound) states of the biosensors. We observed much larger signal changes (>2,500%) and Z'-factors of 0.5 or more when we grew cells in 96- or 384-well plates and analyzed PPI changes using a TGL plate reader. The modular design and exceptional dynamic range of lanthanide-based LRET biosensors will facilitate versatile imaging and cell-based screening of PPIs.Similarities between microbial and cancer cells were noticed in recent years and serve as a basis for an atavism theory of cancer. Cancer cells would rely on the reactivation of an ancestral "genetic program" that would have been repressed in metazoan cells. Here we argue that cancer cells resemble unicellular organisms mainly in their similar way to exploit cellular stochasticity to produce cell specialization and maximize proliferation. Indeed, the relationship between low stochasticity, specialization, and quiescence found in normal differentiated metazoan cells is lost in cancer. On the contrary, low stochasticity and specialization are associated with high proliferation among cancer cells, as it is observed for the "specialist" cells in microbial populations that fully exploit nutritional resources to maximize proliferation. Thus, we propose a model where