https://www.selleckchem.com/products/mcc950-sodium-salt.html Susceptibility of the AA5083 FSW joint to pitting corrosion was attributed to the difference of relative potential between the intermetallic phase and Al matrix.This work was aimed to improve the shear strength of disintegrated carbonaceous mudstone (DCM) with nanotalc (NT). A series of direct shear tests were carried out on the NT-modified DCM specimens to determine their shear strengths at various NT concentrations. Subsequently, X-ray diffraction (XRD) and scanning electron microscopy (SEM) were performed to reveal the underlying mechanism which the results showed that shear strength was first increased and then decreased with increasing certain NT concentration. Moreover, the increase in NT concentration also resulted in rise in cohesion and reduction in angle of internal friction. The optimum NT concentration for shear strength improvement of DCM is 4%. This improvement of shear strength is achieved because NT can fill the pores in DCM and its products can bind with particles. This results in formation of large aggregates owing to the small size, strong adsorption capacity and cation-exchange capacity.Efficacy of added nano-CaCO₃ (NC) on engineering performances, including fluidity, initial setting time, bleeding rate and yield stress of cement grouts was investigated in this study. Results showed that the fluidity and bleeding rate for NC-cement (NCC) composite grout first decreased with increased NC content (i.e., ratio of NC mass to cement mass) and then slightly recovered as the NC content exceeded 2%. The initial setting time was always reduced while the yield stress increased with increased NC content. The microstructure of NCC was analyzed by means of scanning electron microscopy (SEM) and X-ray diffraction (XRD). It was found that the NC can promote the cement hydration, but an excess amount of NC will inhibit the cement hydration and affect the engineering performances of cement grouts. The o