Based on the provincial panel data of China during 2006-2017, this study uses the panel smooth transition (PSTR) model to study the dynamic transformation mechanism of pollution emission under environmental regulation. We focus on technological progress, economic growth, and foreign direct investment (FDI) as threshold variables, and analyses the non-linear effects of environmental regulation on pollution emissions under those threshold variables, attempting to explore the effectiveness of existing environmental regulations. The structure of biased technological progress is based on the slacks-based measure (SBM) and Global-Malmquist-Luenberger index, which is divided into pollution-biased technology progress and clean-biased technology progress. Finally, we use the panel vector auto regressive (PVAR) algorithm to further verify the relationship. The findings are as follows (1) Environmental regulation has a significant nonlinear effect on pollution emissions, and technological progress is the optimal threshold variable of this study. (2) Under the influence of these three factors, environmental regulation has a substitution effect on pollution discharge, and a stronger substitution effect on emission reduction in areas with advanced technology and high FDI. It also has a lower emission reduction effect in the high-system areas of economic development than in the low-system areas. (3) The PVAR results show that the impact on environmental regulation of technological progress and FDI has gradually turned from positive to negative; the impact of economic growth on environmental regulation has always been positive but is gradually decreasing. This study points out the direction for governments and companies to implement effective environmental regulations. The diabetes patients enrolled in the pay-for-performance (P4P) program demonstrate reduced risk of death. Body mass index (BMI) is a risk factor of all-cause death. This study investigates the effects of BMI and P4P on the risk of death in type 2 diabetes patients. This is a retrospective cohort study. The study population includes the 3-wave National Health Interview Survey in Taiwan. A total of 6354 patients with diabetes aged ≥ 20 years were enrolled and followed up until the end of 2014. The highest mortality rate per 1000 person-years was 61.05 in the underweight patients with diabetes. A lower crude death rate was observed in the P4P participants than non-P4P participants. The risk of death was 1.86 times higher in the underweight patients with diabetes than that in the normal weight group (95% CI 1.37-2.53) and was lower in the P4P participants, as compared to the non-participants (HR 0.55, 95% CI 0.44-0.69). The most significant effect of joining the P4P program in reducing death risk was found in the underweight patients with diabetes (HR 0.11, 95% CI 0.04-0.38), followed by the obesity group (HR 0.30, 95% CI 0.17-0.52). Different effects of joining the P4P program on reducing death risk were observed in the underweight and obesity groups. We strongly recommend that patients with diabetes and without healthy BMIs participate in the P4P program. Different effects of joining the P4P program on reducing death risk were observed in the underweight and obesity groups. We strongly recommend that patients with diabetes and without healthy BMIs participate in the P4P program.Diabetes is considered one of the major causes of chronic kidney disease (CKD), affecting renal blood vessels and nerves. Diagnosis of CKD by traditional biochemical serum and blood analyses is insufficient and insensitive, thus requiring the development of a more robust technique. This novel study aims to propose a new method for the accurate diagnosis of CKD, quantification of kidney damage, and its prognosis by physicians by measuring the kidney volume on computed tomography (CT). In total, 251 patients were enrolled in this retrospective study. They were divided into four groups control, patients having diabetes, patients having CKD, and patients having both diabetes and CKD. Results showed that kidney volume correlated negatively with both GFR and HbA1C on CT images, in addition to decreasing faster in males than females. Moreover, HbA1C was shown to correlate positively with creatinine and negatively with GFR. Finally, GFR was more robust than creatinine when correlated with age. The association between kidney volume with GFR and HbA1c can be used to accurately anticipate kidney volume in established CKD on CT scan, especially in resource-poor settings. Furthermore, HbA1C can serve as a powerful biomarker for studying renal function in diabetic CKD patients as it correlates with creatinine and GFR.Detection and isolation of infected people are believed to play an important role in the control of the COVID-19 pandemic. Some countries conduct large-scale screenings for testing, whereas others test mainly people with high prior probability of infection such as showing severe symptoms and/or having an epidemiological link with a known or suspected case or cluster of cases. However, what a good testing strategy is and whether the difference in testing strategy shows a meaningful, measurable impact on the COVID-19 epidemic remain unknown. Here, we showed that patterns of association between effective reproduction number (Rt) and test positivity rate can illuminate differences in testing situation among different areas, using global and local data from Japan. https://www.selleckchem.com/products/lenalidomide-s1029.html This association can also evaluate the adequacy of current testing systems and what information is captured in COVID-19 surveillance. The differences in testing systems alone cannot predict the results of epidemic containment efforts. Furthermore, monitoring test positivity rates and severe case proportions among the nonelderly can predict imminent case count increases. Monitoring test positivity rates in conjunction with the concurrent Rt could be useful to assess and strengthen public health management and testing systems and deepen understanding of COVID-19 epidemic dynamics.Aromatic nitroderivatives are compounds of considerable environmental concern, because some of them are phytotoxic (especially the nitrophenols, and particularly 2,4-dinitrophenol), others are mutagenic and potentially carcinogenic (e.g., the nitroderivatives of polycyclic aromatic hydrocarbons, such as 1-nitropyrene), and all of them absorb sunlight as components of the brown carbon. The latter has the potential to affect the climatic feedback of atmospheric aerosols. Most nitroderivatives are secondarily formed in the environment and, among their possible formation processes, photonitration upon irradiation of nitrate or nitrite is an important pathway that has periodically gained considerable attention. However, photonitration triggered by nitrate and nitrite is a very complex process, because the two ionic species under irradiation produce a wide range of nitrating agents (such as •NO2, HNO2, HOONO, and H2OONO+), which are affected by pH and the presence of organic compounds and, in turn, deeply affect the nitration of aromatic precursors.