https://www.selleckchem.com/products/e-7386.html Yeast two-hybrid assay results indicated that MKT1 directly interacts with EIF4G5. MKT1-PBP1 complexes can therefore interact with mRNAs via their poly(A) tails and caps, as well as through sequence-specific RNA-binding proteins. Correspondingly, MKT1 is associated with many mRNAs, although not with those encoding ribosomal proteins. Meanwhile, MKT1L resembles MKT1 at the C-terminus, but additionally features an N-terminal extension with low-complexity regions. Although MKT1L depletion inhibited cell proliferation, we found no evidence that it specifically interacts with RNA-binding proteins or mRNA. We speculate that MKT1L may compete with MKT1 for PBP1 binding and thereby modulate the function of MKT1-containing complexes.Mediator complex subunit 16 (MED16) is a component of the mediator complex and functions as a coactivator in transcriptional events at almost all RNA polymerase II-dependent genes. In this study, we report that the expression of MED16 is markedly decreased in papillary thyroid cancer (PTC) tumors compared with normal thyroid tissues. In vitro, MED16 overexpression in PTC cells significantly inhibited cell migration, enhanced sodium/iodide symporter (NIS) expression and iodine uptake, and decreased resistance to radioactive 131I (RAI). Conversely, PTC cells in which MED16 had been further knocked down (MED16KD) exhibited enhanced cell migration, epithelial-mesenchymal transition (EMT), and RAI resistance, accompanied by decreased sodium/iodide symporter (NIS) levels. Moreover, cell signaling through transforming growth factor β (TGF-β) was highly activated after the MED16 knockdown. Similar results were obtained in MED12KD PTC cells, and a co-immunoprecipitation experiment verified interactions between MED16 and MED12 and MED16 and TGF-βR2. Of note, the application of LY2157299, a potent inhibitor of TGF-β signaling, significantly attenuated MED16KD-induced RAI resistance both in vitro and in vivo.