https://www.selleckchem.com/products/OSI-906.html Organophosphate-chloride complexes [(2,6- i Pr2C6H3-O)2POO2LnCl(CH3OH)4]·2CH3OH, Ln = Nd (1), Eu (2), Gd (3), and Tb (4) have been obtained and structurally characterized. Their reaction with 2,2'6',2″-terpyridine leads to the formation of 11 adducts ([(2,6- i Pr2C6H3-O)2POO2LnCl(terpy)(H2O)2(CH3OH)], Ln = Eu (5), Gd (6), Tb (7) with exception of Nd, where tris-diisopropylphenylphosphate complex [(2,6- i Pr2C6H3-O)2POO3Nd) (terpy)(H2O)(CH3OH)] (8) was obtained due to the ligand metathesis. A bright luminescence observed for the Eu and Tb organophosphate complexes is the first example of an application of organophosphate ligands for 4f-ions luminescence sensitization. Photophysical properties of all complexes were analyzed by optical spectroscopy and an energy transfer scheme was discussed. A combination of two types of ligands into the coordination sphere (phosphate and phenanthroline) allows designing the Eu surrounding with very high intrinsic quantum yield QEuEu (0.92) and highly luminescent Ln complexes for both visible and near-infrared (NIR) regions.A biosensor is defined as a measuring system that includes a biological receptor unit with distinctive specificities toward target analytes. Such analytes include a wide range of biological origins such as DNAs of bacteria or viruses, or proteins generated from an immune system of infected or contaminated living organisms. They further include simple molecules such as glucose, ions, and vitamins. One of the major challenges in biosensor development is achieving efficient signal capture of biological recognition-transduction events. Carbon nanomaterials (CNs) are promising candidates to improve the sensitivity of biosensors while attaining low detection limits owing to their capability of immobilizing large quantities of bioreceptor units at a reduced volume, and they can also act as a transduction element. In addition, CNs can be adapted to functionalization and con