https://www.selleckchem.com/products/YM155.html QuPath, originally created at the Centre for Cancer Research & Cell Biology at Queen's University Belfast as part of a research programme in digital pathology (DP) funded by Invest Northern Ireland and Cancer Research UK, is arguably the most wildly used image analysis software program in the world. On the back of the explosion of DP and a need to comprehensively visualise and analyse whole slides images (WSI), QuPath was developed to address the many needs associated with tissue based image analysis; these were several fold and, predominantly, translational in nature from the requirement to visualise images containing billions of pixels from files several GBs in size, to the demand for high-throughput reproducible analysis, which the paradigm of routine visual pathological assessment continues to struggle to deliver. Resultantly, large-scale biomarker quantification must increasingly be augmented with DP. Here we highlight the impact of the open source Quantitative Pathology & Bioimage Analysis DP system since its inception, by discussing the scope of scientific research in which QuPath has been cited, as the system of choice for researchers.Accurate cancer type classification based on genetic mutation can significantly facilitate cancer-related diagnosis. However, existing methods usually use feature selection combined with simple classifiers to quantify key mutated genes, resulting in poor classification performance. To circumvent this problem, a novel image-based deep learning strategy is employed to distinguish different types of cancer. Unlike conventional methods, we first convert gene mutation data containing single nucleotide polymorphisms, insertions and deletions into a genetic mutation map, and then apply the deep learning networks to classify different cancer types based on the mutation map. We outline these methods and present results obtained in training VGG-16, Inception-v3, ResNet-50 and Inception-ResN