https://www.selleckchem.com/products/mk-8719.html Patients suffering from dementia with Lewy body (DLB) often see complex visual hallucinations (CVH). Despite many pathological, clinical, and neuroimaging studies, the mechanism of CVH remains unknown. One possible scenario is that top-down information is being used to compensate for the lack of bottom-up information. To investigate this possibility and understand the underlying mathematical structure of the CVH mechanism, we propose a simple computational model of synaptic plasticity with particular focus on the effect of selective damage to the bottom-up network on self-reorganization. We show neurons that undergo a change in activity from a bottom-up to a top-down network framework during the reorganization process, which can be understood in terms of state transitions. Assuming that the pre-reorganization representation of this neuron remains after reorganization, it is possible to interpret neural response induced by top-down information as the sensation of bottom-up information. This situation might correspond to a hallucinatory situation in DLB patients. Our results agree with existing experimental evidence and provide new insights into data that have hitherto not been experimentally validated on patients with DLB. Previous studies have shown that during comprehension readers activate words beyond the unfolding sentence. An open question concerns the mechanisms underlying this behavior. One proposal is that readers mentally simulate the described event and activate related words that might be referred to as the discourse further unfolds. Another proposal is that activation between words spreads in an automatic, associative fashion. The empirical support for these proposals is mixed. Therefore, theoretical accounts differ with regard to how much weight they place on the contributions of these sources to sentence comprehension. In the present study, we attempted to assess the contributions of event simulation an