Quantitative RT-PCR analysis showed expression of NbMYB21, NbMYB86 and NbMYB44 and both abscisic acid (ABA) and jasmonic acid (JA) related genes in the overexpression lines were increased under drought stress. These results indicated that JcCBF2 was able to positively regulate plant drought response by changing the leaf anatomical structure and possibly through JA and ABA signalling pathways. Our work may help us to understand the drought tolerant mechanism. BACKGROUND/AIMS Food preservatives are abundant in many products in the human environment. However, little is known about the impact of many food preservatives on the immune system and the immune related genes. Hence, this study aimed to evaluate the effects of five widespread food preservatives, including butylated hydroxyanisole (BHA), potassium sorbate (PS), sodium benzoate (SB), boric acid (BA), and calcium propionate (CP), on haemato-immune functions. METHOD Sixty Sprague-Dawley rats were assigned to groups orally administered water (control), BHA (0.09 mg/kg), PS (4.5 mg/kg), SB (0.9 mg/kg), BA (0.16 mg/kg) or CP (0.18 mg/kg) for 90 consecutive days. Leukogram and erythrogram profiles were assessed. Nitric oxide and immunoglobulin levels together with phagocytic and lysozyme activities were estimated. Histologic examinations and histomorphometric analysis of splenic tissues were performed. Variations in the mRNA expression levels of tumour necrosis factor alpha (TNF-α), interferon gamma (IFNγ), interleukin (IL)-1β, IL-6, and IL-10 were assessed. RESULTS Anemic conditions, thrombocytopenia, leucocytopaenia simultaneous with lymphocytopaenia, monocytopenia, and esinopenia have been obvious following long term exposure to the tested food additives. Prominent exhaustion was noted in immunoglobulin and NO levels and in lysozyme and phagocytic activities. IFNγ, TNF-α, IL-1β, IL-6, and IL-10 were obviously upregulated in the groups exposed to food preservatives. CONCLUSION These results confirmed that continued exposure to high levels of BHA, PS, SB, BA, and CP has haematotoxic and immunotoxic effects. Furthermore, these adverse effects are mediated by cytokine production. Pycnoporus sanguineus, an edible mushroom, produces antimicrobial and antitumor bioactive compounds and pH- and thermo- stable laccases that have multiple potential biotechnological applications. Here we reported the complete genome of the species Pycnoporus sanguineus ACCC 51,180 by using the combination of Illumina HiSeq X Ten and the PacBio sequencing technology. The represented genome is 36.6 Mb composed of 59 scaffolds with 12,086 functionally annotated protein-coding genes. The genome of Pycnoporus sanguineus encodes at least 19 biosynthetic gene clusters for secondary metabolites, including a terpene cluster for biosynthesis of the antitumor clavaric acid. Seven laccases were identified, while 22 genes were found to be involved in the kynurenine pathway in which the intermediate metabolite 3-hydroxyanthranilic acid were catalyzed by laccases into cinnabarinic acid. This study represented the third genome of the genus Pycnoporus, and wound facilitate the exploration of useful sources from Pycnoporus sanguineus for future industrial applications. Qinchuan cattle is one of the five yellow cattle breeds in China with good performance of meat. The proliferation and differentiation level of muscle and fat are closely related to the growth and development of the organism and are the key factors affecting the quality of meat. In order to study the effect of lncRNA on the fat tissues of Qinchuan cattle, six calf and adult bovine adipose tissues were selected for high-throughput sequencing. We obtained 3,716 lncRNA candidates from calves and adult cattle fat samples, among them 789 lncRNA were annotated and 2,927 lncRNA were novel lncRNA. A number of lncRNAs were highly abundant, and 119 lncRNA were differentially expressed between two developmental stages. We further validated several differentially expressed lncRNAs using qPCR, and the results were consistent with the sequencing data. Therefore, we conclude that lncRNA may play an important role in adipose tissue in different age groups of cattle. Asian race, younger age, higher body mass index (BMI) and antiresorptive drugs have all been associated with atypical femur fractures (AFFs). This increased risk of AFF in Asians is important as by 2050, >50% of hip fractures globally will occur in Asia, with an increased demand for antiresorptive drugs being likely. https://www.selleckchem.com/products/Y-27632.html It is also currently unclear whether AFF risk is increased in all Asian subgroups. We therefore aimed to identify the incidence of AFFs in an Australian tertiary hospital, the contribution of ethnic origin to AFF risk, and determine other clinical risk factors for AFF. From January 1, 2009 to December 31, 2017, 97 AFFs (82 complete and 15 incomplete) occurred in 71 individuals in the overall study population of 204,358. Patients with AFF were more likely to be female (88.7% vs 69.1%, p  less then  0.001) and younger [median (IQR) 74(52-92) years vs 83(75-88) years, p  less then  0.001] than the "typical" femur fracture group (n = 3330). The cumulative incidence rate of AFF was 4.2 per 100,000 person-years, far lower than for any ICD-10 AM coded "typical" femur fracture (202.9 per 100,000 person-years). Asians were 3.4 (95%CI, 2.1-5.6) times more likely to sustain an AFF than non-Asians, the highest incidence being in those from South East Asian countries (16.6 per 100,000 person years), suggesting differences in risk between Asian countries. In the nested case-control study, bisphosphonate use was an independent association with AFF development. We conclude Asian ethnicity is an important association with AFF in this large Australian cohort. C-type natriuretic peptide (CNP) activation of guanylyl cyclase (GC)-B, also known as NPR2, stimulates cGMP synthesis and bone elongation. CNP activation requires the phosphorylation of multiple GC-B residues and dephosphorylation inactivates the receptor. GC-B7E/7E knockin mice, expressing a glutamate-substituted, "pseudophosphorylated," form of GC-B, exhibit increased CNP-dependent GC activity. Since mutations that constitutively activate GC-B in the absence of CNP result in low bone mineral density in humans, we determined the skeletal phenotype of 9-week old male GC-B7E/7E mice. Unexpectedly, GC-B7E/7E mice have significantly greater tibial and L5 vertebral trabecular bone volume fraction, tibial trabecular number, and tibial bone mineral density. Cortical cross-sectional area, cortical thickness, periosteal diameter and cortical cross-sectional moment of inertia were also significantly increased in GC-B7E/7E tibiae. Three-point bending measurements demonstrated that the mutant tibias and femurs had greater ultimate load, stiffness, energy to ultimate load, and energy to failure.