Multimodal interfaces that combine direct manipulation and natural language have shown great promise for data visualization. Such multimodal interfaces allow people to stay in the flow of their visual exploration by leveraging the strengths of one modality to complement the weaknesses of another. In this work, we introduce an approach that interweaves multimodal interaction combining direct manipulation and natural language with flexible unit visualizations. We employ the proposed approach in a proof-of-concept system, DataBreeze. Coupling pen, touch, and speech-based multimodal interaction with flexible unit visualizations, DataBreeze allows people to create and interact with both systematically bound (e.g., scatterplots, unit column charts) and manually customized views, enabling a novel visual data exploration experience. We describe our design process along with DataBreeze's interface and interactions, delineating specific aspects of the design that empower the synergistic use of multiple modalities. We also present a preliminary user study with DataBreeze, highlighting the data exploration patterns that participants employed. Finally, reflecting on our design process and preliminary user study, we discuss future research directions.We introduce new transforms for efficient compression of image blocks with directional preferences. Each transform, which is an orthogonal basis for a specific direction, is constructed from an eigen-decomposition of a discrete directional Laplacian system matrix. The method is a natural extension of the DCT, expressing the Laplacian in Cartesian coordinates rotated to some predetermined angles. Symmetry properties of the transforms over square domains lead to efficient computation and compact storage of the directional transforms. A version of the directional transforms was implemented within the beyond HEVC software and demonstrated significant improvement for intra block coding.Bilinear pooling achieves great success in fine-grained visual recognition (FGVC). Recent methods have shown that the matrix power normalization can stabilize the second-order information in bilinear features, but some problems, e.g., redundant information and over-fitting, remain to be resolved. In this paper, we propose an efficient Multi-Objective Matrix Normalization (MOMN) method that can simultaneously normalize a bilinear representation in terms of square-root, low-rank, and sparsity. These three regularizers can not only stabilize the second-order information, but also compact the bilinear features and promote model generalization. In MOMN, a core challenge is how to jointly optimize three non-smooth regularizers of different convex properties. https://www.selleckchem.com/products/trastuzumab-deruxtecan.html To this end, MOMN first formulates them into an augmented Lagrange formula with approximated regularizer constraints. Then, auxiliary variables are introduced to relax different constraints, which allow each regularizer to be solved alternately. Finally, several updating strategies based on gradient descent are designed to obtain consistent convergence and efficient implementation. Consequently, MOMN is implemented with only matrix multiplication, which is well-compatible with GPU acceleration, and the normalized bilinear features are stabilized and discriminative. Experiments on five public benchmarks for FGVC demonstrate that the proposed MOMN is superior to existing normalization-based methods in terms of both accuracy and efficiency. The code is available https//github.com/mboboGO/MOMN.In this paper, a progressive collaborative representation (PCR) framework is proposed that is able to incorporate any existing color image demosaicing method for further boosting its demosaicing performance. Our PCR consists of two phases (i) offline training and (ii) online refinement. In phase (i), multiple training-and-refining stages will be performed. In each stage, a new dictionary will be established through the learning of a large number of feature-patch pairs, extracted from the demosaicked images of the current stage and their corresponding original full-color images. After training, a projection matrix will be generated and exploited to refine the current demosaicked image. The updated image with improved image quality will be used as the input for the next training-and-refining stage and performed the same processing likewise. At the end of phase (i), all the projection matrices generated as above-mentioned will be exploited in phase (ii) to conduct online demosaicked image refinement of the test image. Extensive simulations conducted on two commonly-used test datasets (i.e., the IMAX and Kodak) for evaluating the demosaicing algorithms have clearly demonstrated that our proposed PCR framework is able to constantly boost the performance of any image demosaicing method we experimented, in terms of the objective and subjective performance evaluations.The re-identification (ReID) task has received increasing studies in recent years and its performance has gained significant improvement. The progress mainly comes from searching for new network structures to learn person representations. Most of these networks are trained using the classic stochastic gradient descent optimizer. However, limited efforts have been made to explore potential performance of existing ReID networks directly by better training scheme, which leaves a large space for ReID research. In this paper, we propose a Self-Inspirited Feature Learning (SIF) method to enhance performance of given ReID networks from the viewpoint of optimization. We design a simple adversarial learning scheme to encourage a network to learn more discriminative person representation. In our method, an auxiliary branch is added into the network only in the training stage, while the structure of the original network stays unchanged during the testing stage. In summary, SIF has three aspects of advantages (1) it is designed under general setting; (2) it is compatible with many existing feature learning networks on the ReID task; (3) it is easy to implement and has steady performance. We evaluate the performance of SIF on three public ReID datasets Market1501, DuckMTMC-reID, and CUHK03(both labeled and detected). The results demonstrate significant improvement in performance brought by SIF. We also apply SIF to obtain state-of-the-art results on all the three datasets. Specifically, mAP / Rank-1 accuracy are 87.6% / 95.2% (without re-rank) on Market1501, 79.4% / 89.8% on DuckMTMC-reID, 77.0% / 79.5% on CUHK03 (labeled) and 73.9% / 76.6% on CUHK03 (detected), respectively. The code of SIF will be available soon.