Aggressive non-Hodgkin lymphomas with secondary central nervous system (CNS) involvement bear a dismal prognosis. Optimal treatment remains so far unclear, and effective treatment options remain an unmet clinical need. https://www.selleckchem.com/autophagy.html Remission rates are in general low, resulting in rapid relapses and palliative care in the majority of patients. High-intensity treatment combining effective CNS-directed chemoimmunotherapy with autologous stem cell transplantation was shown in a recent phase 2 trial to induce durable remissions. Here, we report the outcome of the first real-world patient cohort treated according to the published protocol. We retrospectively identified 17 HIV-negative lymphoma patients with secondary CNS involvement, either at first diagnosis or at relapse of lymphoma, treated according to the study protocol published by Ferreri et al. [J Clin Oncol. 2015] at two university medical centers in Germany. Treatment consisted of four cycles of chemoimmunotherapy with a consolidating autologous stem cell transplantation. Adverse events and overall outcome were assessed. Five patients had CNS involvement at first diagnosis and 12 patients at relapse of lymphoma. A complete response was achieved in 9 patients. Median survival was 11 months. Five patients died of septic complications and 4 patients succumbed to progression or relapse of disease. The outcome of our real-world cohort emphasizes the possible toxic character of the treatment protocol by Ferreri et al. [J Clin Oncol. 2015]. Further improvement in treatment regimens is still an unmet need. The outcome of our real-world cohort emphasizes the possible toxic character of the treatment protocol by Ferreri et al. [J Clin Oncol. 2015]. Further improvement in treatment regimens is still an unmet need.In nature, very few animals locomote on two legs. Static bipedalism can be found in four limbed and five limbed animals like dogs, cats, birds, monkeys and kangaroos, but it cannot be seen in hexapods or other multi-limbed animals. In this paper, we present a simulation with a novel perspective on the evolution of static bipedalism, with a virtual creature evolving its body and controllers, and we apply an evolutionary algorithm to explore the locomotion transition from octapods to bipods. We find that the presence of four limbs in the evolutionary trajectory of the creature scaffolds a parametric jump that enables bipedalism, and shows that hexapods, without undergoing such transformation, struggle to evolve into bipeds. An analysis of the transitional parameters points to the role of a shorter femur length in helping maintain the stability of the body, and the tibia length is responsible for improving the forward speed.Objective. Speech perception in cocktail party scenarios has been the concern of a group of researchers who are involved with the design of hearing-aid devices.Approach. In this paper, a new unified ear-EEG-based binaural speech enhancement system is introduced for hearing-impaired (HI) listeners. The proposed model, which is based on auditory attention detection (AAD) and individual hearing threshold (HT) characteristics, has four main processing stages. In the binaural processing stage, a system based on the deep neural network is trained to estimate auditory ratio masks for each of the speakers in the mixture signal. In the EEG processing stage, AAD is employed to select one ratio mask corresponding to the attended speech. Here, the same EEG data is also used to predict the HTs of listeners who participated in the EEG recordings. The third stage, called insertion gain computation, concerns the calculation of a special amplification gain based on individual HTs. Finally, in the selection-resynthesis-amplification stage, the attended speech signals of the target are resynthesized based on the selected auditory mask and then are amplified using the computed insertion gain.Main results. The detection of the attended speech and the HTs are achieved by classifiers that are trained with features extracted from the scalp EEG or the ear EEG signals. The results of evaluating AAD and HT detection show high detection accuracies. The systematic evaluations of the proposed system yield substantial intelligibility and quality improvements for the HI and normal-hearingaudiograms.Significance. The AAD method determines the direction of attention from single-trial EEG signals without access to audio signals of the speakers. The amplification procedure could be adjusted for each subject based on the individual HTs. The present model has the potential to be considered as an important processing tool to personalize the neuro-steered hearing aids.Radiomics is an active area of research in medical image analysis, however poor reproducibility of radiomics has hampered its application in clinical practice. This issue is especially prominent when radiomic features are calculated from noisy images, such as low dose computed tomography (CT) scans. In this article, we investigate the possibility of improving the reproducibility of radiomic features calculated on noisy CTs by using generative models for denoising. Our work concerns two types of generative models-encoder-decoder network (EDN) and conditional generative adversarial network (CGAN). We then compared their performance against a more traditional 'non-local means' denoising algorithm. We added noise to sinograms of full dose CTs to mimic low dose CTs with two levels of noise low-noise CT and high-noise CT. Models were trained on high-noise CTs and used to denoise low-noise CTs without re-training. We tested the performance of our model in real data, using a dataset of same-day repeated low dose CTs he reproducibility of radiomic features calculated on low dose CT scans by applying generative models.The high-pressure (HP) properties of TlFeSe2are investigated based on the first-principles calculations combined with structure-searching method. The low-pressureC2/mphase will transform into the orthorhombicPnmaphase at 2 GPa, with 8% volume collapse, the insulator-metal transition and the bicollinear antiferromagnetic-to-nonmagnetic spin-crossover. At pressure higher than 8 GPa, the HPC2/mphase will become the ground state. BothPnmaphase and HPC2/mphase are constituted by one-dimensional chains of edge-sharing FeSe5tetragonal pyramids. Pressuring decrease the Se-Se bond length giving rise to the transition from [Se2]3-to [Se2]2-. Negative charge transfer causes the Fe2+with ∼2 μBmagnetic moment at ambient pressure and the nonmagnetic Fe1.5+at higher pressure. The Fermi surfaces of HP phases are also discussed.