https://www.selleckchem.com/products/blu9931.html Furthermore, chlorine appears evenly diffused in the cinnabar (HgS) layer, inducing the alteration of its more external part into calomel (Hg2Cl2). In fact, from the chemical maps the presence in the sample of an unaltered portion of the cinnabar layer is evident. Such degradation products were probably due to the exposure of the painting to a chloride-rich atmosphere for a long time. This led to a global blackening of the painting. To protect the painting from aggressive chemical species, siloxane compounds were probably used as a modern restorative treatment. ToF-SIMS chemical maps revealed permeation of the silicon-based consolidants within the sample's cracks and no interaction products with the other constitutive materials of the painting were found. Finally, the presence of different lead soaps was detected in correspondence with the lead white layer.Free chlorine is widely used as a disinfectant in the water industry. Accurate monitoring of the residual free chlorine concentration in water cycles is critical to maintain public health safety. Here, we report on a thin gold film-based reusable and reagent-less free chlorine sensor. A gold thin film of 300 nm thickness was deposited on a polyimide tape, which was placed on a glass substrate and a simple Styrofoam adhesive tape was used to cover the film and expose 0.36 cm2 circular area as the sensing surface. The sensor showed a high sensitivity of 0.327 μA ppm-1, with a linear range of 0 to 6 ppm, and an accuracy of less then 0.1 ppm with high selectivity in the presence of commonly interfering ions. The sensor response time was 50 s with a negligible hysteresis of 0.06 ppm. The sensor showed very little change in output current in the pH range between 5.2 to 8.4, and temperature range of 20 to 30 °C. Therefore, the sensor operation is reagent-less, does not need frequent calibration, and showed consistent sensing performance with real water samples. The simple