Optical time-stretch (OTS) imaging is effective for observing ultra-fast dynamic events in real time by virtue of its capability of acquiring images with high spatial resolution at high speed. https://www.selleckchem.com/products/FK-506-(Tacrolimus).html In different implementations of OTS imaging, different configurations of its signal detection, i.e. fiber-coupled and free-space detection schemes, are employed. In this research, we quantitatively analyze and compare the two detection configurations of OTS imaging in terms of sensitivity and image quality with the USAF-1951 resolution chart and diamond films, respectively, providing a valuable guidance for the system design of OTS imaging in diverse fields.Plasmonic organic hybrid electro/optic modulators are among the most innovative light modulators fully compatible with the silicon photonics platform. In this context, modeling is instrumental to both computer-aided optimization and interpretation of experimental data. Due to the large computational resources required, modeling is usually limited to waveguide simulations. The first aim of this work to investigate an improved, physics-based description of the voltage-dependent electro/optic effect, leading to a multiphysics-augmented model of the modulator cross-section. Targeting the accuracy of full-wave, 3D modeling with moderate computational resources, the paper presents a novel mixed modal-FDTD simulation strategy that allows us to drastically reduce the number and complexity of 3D-FDTD simulations needed to accurately evaluate the modulator response. This framework is demonstrated on a device inspired by the literature.In this paper, high-performance 1×128 linear arrays of 4H-SiC ultraviolet (UV) avalanche photodiode (APD) with dual-frequency plasma enhanced chemical vapor deposition (PECVD) passivation are demonstrated for the first time. The results show that SiNx dielectric deposited by dual-frequency PECVD can effectively reduce the leakage current at high bias voltages. Due to the improved 4H-SiC epi-layer material and SiNx passivation, the fabricated 22 mm-long 1×128 4H-SiC APD linear arrays exhibit an excellent performance with a high pixel yield of 100% and a small breakdown voltage variation of 0.2 V, which is the best result ever reported. At room temperature, the pixels have a gain of over 105 and a maximum quantum efficiency of 53.5% @ 285 nm. Besides the high uniformity of breakdown voltage for 128 pixels, the dark currents at 95% of breakdown voltage are all below 1 nA.Under 266-nm (deep ultraviolet, DUV) laser irradiation, an SrB4O7 (SBO) single crystal has been found to exhibit a surface laser-induced damage threshold (LIDT) of ∼ 16.4 J/cm2, which is higher than those of a synthetic silica glass (4.8 J/cm2) and a calcium fluoride (CaF2) crystal (11.4 J/cm2). By catalyst-referred etching (CARE), the LIDT of an SBO crystal can also be improved to around 24.1 J/cm2, which is 1.4 and 6.0 times higher compared to an unetched crystal and a silica glass, respectively. With high surface LIDTs, SBO single crystals can then be used as optical window materials for high-power DUV laser systems.High group delay dispersion (GDD) is often required for ultrafast laser applications. To achieve GDD level higher than -10000 fs2 in a single mirror setting is difficult due to the high sensitivity to unavoidable production inaccuracies. To overcome the problem, total internal reflection (TIR) based dispersive mirrors have been proposed in theory. In this paper, we report our continuous effort to further design, fabricate and measure TIR based dispersive mirrors.Growing interest in non-line-of-sight (NLoS) imaging, colloquially referred to as "seeing around corners", has led to the development of phasor-field (P-field) imaging, wherein the field envelope of amplitude-modulated spatially-incoherent light is manipulated like an optical wave to directly probe a space that is otherwise shielded from view by diffuse scattering. Recently, we have established a paraxial theory for P-field imaging in a transmissive geometry that is a proxy for three-bounce NLoS imaging [J. Dove and J. H. Shapiro, Opt. Express27(13) 18016 (2019)]. Our theory, which relies on the Fresnel diffraction integral, introduces the two-frequency spatial Wigner distribution (TFSWD) to efficiently account for specularities and occlusions that may be present in the hidden space and cannot be characterized with P-field formalism alone. However, because the paraxial assumption is likely violated in many, if not most, NLoS scenarios, in the present paper we overcome that limitation by deriving a nonparaxial propagation formula for the P field using the Rayleigh-Sommerfeld diffraction integral. We also propose a Rayleigh-Sommerfeld propagation formula for the TFSWD and provide a derivation that is valid under specific partial-coherence conditions. Finally, we report a pair of differential equations that characterize free-space TFSWD propagation without restriction.The mechanical properties of granular materials such as sand, snow and rice are inherently tied to the size of the constituent particles. When a system is composed of particles of various sizes, it is common for these particles to segregate by size when disturbed. There is therefore a need to measure the particle size distribution within granular media as it evolves over time. However, there are very few experimental techniques available which can measure the particle sizes in situ without disturbing the medium. Here we present a technique to determine the volume fractions of the grain sizes in bidisperse granular materials with the aid of dynamic X-ray radiography. As a result of the penetration of the X-rays into the medium, radiography minimises the effect of walls and boundaries on experimental measurements, which typically dominate optical measurements. The technique proposed here is based on using Fourier transforms of X-ray radiographs to extract local measurements evolving over time that can be related to the particle size distribution. For the case of bidisperse granular media, with two distinct particle sizes, we show that this technique can measure the relative concentration of the two species, which we determine via a heuristic calibration parameter. We validate this technique by comparing discrete element simulations of mixtures of known concentration with experimental measurements derived from X-ray radiography of glass beads. In the future, this technique could be used to measure the grain size distribution in systems of bidisperse dense granular media where the concentration of particles is not known a priori. Additionally, the technique can be used to analyse granular segregation as it evolves dynamically.