Bacteriophages (or phages) play major roles in the evolution of bacterial pathogens via horizontal gene transfer. Multiple phages are often integrated in a host chromosome as prophages, not only carrying various novel virulence-related genetic determinants into host bacteria but also providing various possibilities for prophage-prophage interactions in bacterial cells. In particular, Escherichia coli strains such as Shiga toxin (Stx)-producing E. coli (STEC) and enteropathogenic E. coli (EPEC) strains have acquired more than 10 prophages (up to 21 prophages), many of which encode type III secretion system (T3SS) effector gene clusters. In these strains, some prophages are present at a single locus in tandem, which is usually interpreted as the integration of phages that use the same attachment (att) sequence. Here, we present phages integrating into T3SS effector gene cluster-associated loci in prophages, which are widely distributed in STEC and EPEC. Some of the phages integrated into prophages are Stx-encoding phages (Stx phages) and have induced the duplication of Stx phages in a single cell. The identified attB sequences in prophage genomes are apparently derived from host chromosomes. In addition, two or three different attB sequences are present in some prophages, which results in the generation of prophage clusters in various complex configurations. These phages integrating into prophages represent a medically and biologically important type of inter-phage interaction that promotes the accumulation of T3SS effector genes in STEC and EPEC, the duplication of Stx phages in STEC, and the conversion of EPEC to STEC and that may be distributed in other types of E. coli strains as well as other prophage-rich bacterial species.[This corrects the article DOI 10.1371/journal.pone.0248369.].[This corrects the article DOI 10.1371/journal.pone.0244874.].[This corrects the article DOI 10.1371/journal.pone.0174674.].Bacterial meningitis is a major cause of death and disability in children worldwide. Two human restricted respiratory pathogens, Streptococcus pneumoniae and Haemophilus influenzae, are the major causative agents of bacterial meningitis, attributing to 200,000 deaths annually. These pathogens are often part of the nasopharyngeal microflora of healthy carriers. However, what factors elicit them to disseminate and cause invasive diseases, remain unknown. Elevated temperature and fever are hallmarks of inflammation triggered by infections and can act as warning signals to pathogens. Here, we investigate whether these respiratory pathogens can sense environmental temperature to evade host complement-mediated killing. We show that productions of two vital virulence factors and vaccine components, the polysaccharide capsules and factor H binding proteins, are temperature dependent, thus influencing serum/opsonophagocytic killing of the bacteria. We identify and characterise four novel RNA thermosensors in S. pneumoniae and H. influenzae, responsible for capsular biosynthesis and production of factor H binding proteins. Our data suggest that these bacteria might have independently co-evolved thermosensing abilities with different RNA sequences but distinct secondary structures to evade the immune system.[This corrects the article DOI 10.1371/journal.pone.0242437.].[This corrects the article DOI 10.1371/journal.pone.0241027.].Epstein-Barr virus (EBV) is a ubiquitous γ-herpesvirus with latent and lytic cycles. EBV replicates in the stratified epithelium but the nasopharynx is also composed of pseudostratified epithelium with distinct cell types. Latent infection is associated with nasopharyngeal carcinoma (NPC). Here, we show with nasopharyngeal conditionally reprogrammed cells cultured at the air-liquid interface that pseudostratified epithelial cells are susceptible to EBV infection. Donors varied in susceptibility to de novo EBV infection, but susceptible cultures also displayed differences with respect to pathogenesis. https://www.selleckchem.com/products/zongertinib.html The cultures from one donor yielded lytic infection but cells from two other donors were positive for EBV-encoded EBERs and negative for other lytic infection markers. All cultures stained positive for the pseudostratified markers CK7, MUC5AC, α-tubulin in cilia, and the EBV epithelial cell receptor Ephrin receptor A2. To define EBV transcriptional programs by cell type and to elucidate latent/lytic infection-difimposed by EBV infection in NPC.[This corrects the article DOI 10.1371/journal.pone.0249070.].[This corrects the article DOI 10.1371/journal.pone.0201871.].[This corrects the article DOI 10.1371/journal.pone.0244980.].Illegal driftnetting causes each year several entanglements and deaths of sperm whales in different Mediterranean areas, primarily in the Tyrrhenian Sea. In summer 2020, during the June-July fishing season, two sperm whales were found entangled in illegal driftnets in the Aeolian Archipelago waters, Southern Italy. These two rare events were an exceptional chance to collect behavioural and acoustics data about entangled sperm whales. We analysed 1132 one-minute sets of breathing/behavioural data and 1575 minutes of acoustic recording, when the whales were found entangled, during the rescue operation, immediately after release, and in the days thereafter. The first whale was generally quiet showing a general status of debilitation/weakness, numerous skin lesions, and low breathing rate (0.31 (0.60)); it collaborated during rescue operations. On the contrary, the second whale showed a high level of agitation with a high breathing rate (1.48 (1.31)) during both the entanglement period and the net cutting operations, vigorously moving its fluke and pectoral fins, opening its mouth, sideway rolling or side fluking and frequently defecating. Acoustically, the first whale produced mainly single clicks in all phases except for two series of creaks during rescuing operations while the second whale produced a wide range of vocalizations (single clicks, likely either slow clicks or regular clicks, creaks, and codas). Our observations indicate that acoustics, respiratory and behavioural parameters may be useful to monitor the physical/physiological status of sperm whales during disentanglement operations.