Optical microresonators have attracted intense interests in highly sensitive molecular detection and optical precision measurement in the past decades. In particular, the combination of a high quality factor with a small mode volume significantly enhances the nonlinear light-matter interaction in whispering-gallery mode (WGM) microresonators, which greatly boost nonlinear optical sensing applications. https://www.selleckchem.com/products/talabostat.html Nonlinear WGM microsensors not only allow for label-free detection of molecules with an ultrahigh sensitivity but also support new functionalities in sensing such as the specific spectral fingerprinting of molecules with frequency conversion involved. Here, we review the mechanisms, sensing modalities, and recent progresses of nonlinear optical sensors along with a brief outlook on the possible future research directions of this rapidly advancing field.Hepatocellular carcinoma (HCC) is a major cause of concern as it has substantial morbidity associated with it. Previous reports have ascertained the antiproliferative activity of imatinib mesylate (IMS) against diverse types of carcinomas, but limited bioavailability has also been reported. The present study envisaged optimized IMS-loaded lactoferrin (LF)-modified PEGylated liquid crystalline nanoparticles (IMS-LF-LCNPs) for effective therapy of IMS to HCC via asialoglycoprotein receptor (ASGPR) targeting. Results displayed that IMS-LF-LCNPs presented an optimum particle size of 120.40 ± 2.75 nm, a zeta potential of +12.5 ± 0.23 mV, and 73.94 ± 2.69% release. High-resolution transmission electron microscopy and atomic force microscopy were used to confirm the surface architecture of IMS-LF-LCNPs. The results of cytotoxicity and 4,6-diamidino-2-phenylindole revealed that IMS-LF-LCNPs had the highest growth inhibition and significant apoptotic effects. Pharmacokinetics and biodistribution studies showed that IMS-LF-LCNPs have superior pharmacokinetic performance and targeted delivery compared to IMS-LCNPs and plain IMS, which was attributed to the targeting action of LF that targets the ASGPR in hepatic cells. Next, our in vivo experiment established that the HCC environment existed due to suppression of BAX, cyt c, BAD, e-NOS, and caspase (3 and 9) genes, which thus owed upstream expression of Bcl-xl, iNOS, and Bcl-2 genes. The excellent therapeutic potential of IMS-LF-LCNPs began the significant stimulation of caspase-mediated apoptotic signals accountable for its anti-HCC prospect. 1H nuclear magnetic resonance (serum) metabolomics revealed that IMS-LF-LCNPs are capable of regulating the disturbed levels of metabolites linked to HCC triggered through N-nitrosodiethylamine. Therefore, IMS-LF-LCNPs are a potentially effective formulation against HCC.Salmonella selectively colonizes into the hypoxic tumor region and exerts antitumor effects via multiple mechanisms, while the tumor colonized Salmonella recruits host neutrophils into the tumor, presenting a key immunological restraint to compromise the Salmonella efficacy. Here, we develop a combinatorial strategy by employing silver nanoparticles (AgNPs) to improve the efficacy and biosafety of Salmonella. The AgNPs were decorated with sialic acid (SA) to allow selective recognition of L-selectin on neutrophil surfaces, based on which the tumor-homing of AgNPs was achieved by neutrophil infiltration in the Salmonella colonized tumor. The tumor-targeting AgNPs exert the functions of (1) local depletion of neutrophils in tumors to boost the efficacy of Salmonella, (2) direct killing tumor cells via L-selectin-mediated intracellular delivery, and (3) clearing the residual Salmonella after complete tumor eradication to minimize the side effects. With a single tail vein injection of such combination treatment, the tumor was eliminated with high biosafety, resulting in a superior therapeutic outcome.The GeLC-MS workflow, which combines low-cost, easy-to-use sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis (SDS-PAGE) with liquid chromatography-mass spectrometry (LC-MS), is very popular in current bottom-up proteomics. However, GeLC-MS requires that PAGE-separated proteins undergo overnight enzymatic digestion in a gel, resulting in more than 20 h of sample preparation for LC-MS. In this study, we overcame the limitations of GeLC-MS by developing a rapid digestion workflow for PAGE separation of proteins using N,N'-bis(acryloyl)cystamine (BAC) cross-linked gels that can be solubilized by reductive treatment. Making use of an established workflow called BAC-DROP (BAC-gel dissolution to digest PAGE-resolved objective proteins), crude proteome samples were fractionated based on molecular weight by BAC cross-linked PAGE. After fractionation, the gel fragments were reductively dissolved in under 5 min, and in-solution trypsin digestion of the protein released from the gel was completed in less than 1 h at 70 °C, equivalent to a 90-95% reduction in time compared to conventional in-gel trypsin digestion. The introduction of the BAC-DROP workflow to the MS assays for inflammatory biomarker CRP and viral marker HBsAg allowed for serum sample preparation to be completed in as little as 5 h, demonstrating successful marker quantification from a 0.5 μL sample of human serum.The suitability of one-particle energies from the generalized Kohn-Sham semicanonical projected random phase approximation (GKS-spRPA) method for electron affinities of molecules is investigated. It is shown that the GKS-spPRA effective potential includes exact exchange and polarizability-dependent correlation terms that are necessary for the correct description of anionic systems. An O ( N 4 ) implementation that enables fast computation of electron affinities is presented. For model systems, I show that the GKS-spRPA approach is applicable for valence and nonvalence type anions with a maximum error of 0.13 eV for valence anionic states and 0.03 eV for nonvalence anionic states compared to equation of motion coupled cluster methods. For a series of perhalobenzene molecules, C6X6 (X= F, Cl, Br, and I), GKS-spRPA predicts that the ground-state character changes from a nonvalence-σ* type in C6F6- to valence-π* in C6Cl6- and valence-σ* in C6Br6- and C6I6-. Experimental implications of these findings are discussed.