The multiple band nature of PdTe2 is further confirmed from Hall effect measurements.A recent experimental study of the metallization of hydrogen tracked the direct band gap and vibron frequency via infrared measurements up to ∼425 GPa (Loubeyre et al (2020 Nature 577 631). Above this pressure, the direct gap has a discontinuous drop to below the minimum experimentally accessible energy (∼0.1 eV). The authors suggested that this observation is caused by a structural phase transition between the C2/c-24 molecular phase to another molecular phase such as Cmca-12. Here, through ab initio calculations of pressure dependent vibron frequency and direct band gap, we find that the experimental data is consistent with the C2/c-24 phase up to 425 GPa, and suggest that this consistency extends beyond that pressure. Specifically, we find that qualitative changes in the band structure of the C2/c-24 phase lead to a discontinuous drop of the direct band gap, which can explain the observed drop without a structural transition. This alternative scenario, which naturally explains the absence of hysteresis in the measurements, will hopefully motivate further experimental studies to ascertain the structure of the phase above the high pressure 'phase transition'.In this paper, we simulate the nucleation and growth of crystalline nuclei in a molybdenum film cooled at different rates confined between two amorphous walls. We also compare the results for the wall-confined and wall-free systems. We apply the same methodology as in the work (Kirova and Pisarev 2019 J. Cryst. Growth 528 125266) which is based on reconstructing the probability density function for the largest crystalline nucleus in the system. The size of the nucleus and the asphericity parameter are considered as the reaction coordinates. We demonstrate that in both the free and confined systems there are two mechanisms of crystal growth the attachment of atoms to the biggest crystal from the amorphous phase and the merging of the biggest crystal cluster with small ones (coalescence). We show that the attachment mechanism is dominant in the melt cooled down at a slower rate, and the mechanism gradually shifts to coalescence as cooling rate increases. We also observe the formation of long-lived crystal clusters and demonstrate that amorphous walls do not affect their geometric characteristics. However, system confined between walls demonstrates higher glass-forming ability.Herein, the pH-sensitive vancomycin (VANCO) loaded silk fibroin-sodium alginate nanoparticles (NPs) embedded in poly(N-isopropylacrylamide) (PNIPAM) hydrogel containing epidermal growth factor (EGF) are introduced for treating chronic burn wound infections. The hybrid system was developed to control the release rates of an antibiotic and growth factor for optimal treatment of burn infections. VANCO had a pH responsive release behavior from the nanoparticle (NP) and showed higher release rate in an alkaline pH compared to the neutral pH during 10 d. About 30% of EGF was also released from the hydrogel within 20 d. The released VANCO and EGF preserved their bioactivity more than ∼ 80%. The suitable physico-chemical properties and cellular behaviors of PNIPAM hydrogel supported the proliferation and growth of the fibroblast cells. Furthermore, the higher re-epithelialization with good wound contraction rate, neovascular formation, and expression of transforming growth factor-beta were observed in S. aureus infected rat burn wound by using the hydrogel containing VANCO and EGF compared with untreated wounds and hydrogel alone. The wound infection was also significantly reduced in the groups treated with the hydrogels containing VANCO. Overall, in vitro and in vivo results suggested that developed hybrid system would be a promising construct to treat severe wound infection.Technological applications involving 2D MoS2 require transfer of chemical vapor deposition (CVD) grown material from its original substrate and subsequent lithographic processes. Inevitably, those steps contaminate the surface of the 2D material with polymeric residues affecting the electronic and optical properties of the MoS2. Annealing in forming gas is considered an efficient treatment to partially remove such residues. However, hydrogen also interacts with MoS2 creating or saturating sulfur vacancies. https://www.selleckchem.com/products/tacrine-hcl.html Sulfur vacancies are known to be at the origin of n-doping evident in the majority of as-grown MoS2 samples. In this context, investigating the impact of thermal annealing in forming gas on the electronic and optical properties of MoS2 monolayer is technologically important. In order to address this topic, we have systematically studied the evolution of CVD grown MoS2 monolayer using Raman spectroscopy, photoluminescence, x-ray photoelectron spectroscopy and transport measurements through a series of thermal annealing in forming gas at temperatures up to 500 °C. Efficient removal of the polymeric residues is demonstrated at temperatures as low as 200 °C. Above this value, carrier density modulation is identified by photoluminescence, x-ray photoelectron spectroscopy and electrical characterization and is correlated to the creation of sulfur vacancies. Finally, the degradation of the MoS2 single layer is verified with annealing at or above 350 °C through Raman and photocurrent measurements.Metal poly-nitrogen compounds are gaining great interests as potential high energy density materials. Several iron polynitrides have been recently synthesized and investigated under high pressure (2018 Nature Communications 9 2756). In this work the electron correlations within these iron poly-nitrogen compounds were self-consistently determined, benchmarked with those obtained from linear response approach. Along with the increase of the concentration of nitrogen, the Coulomb interaction strengths show a monotonic decrease, where FeN and FeN2 are antiferromagnetic and the others are ferromagnetic. Then the electron correlation is studied along with the pressure, where the electrons are more delocalized as pressure becomes higher. One electronic topological transition was found for FeN2, owing to a breaking of symmetry of spin and a transition of magnetism induced by a structural change. The band structure, densities of states, Fermi surface and absorption spectra were calculated and discussed.