Despite the fact that a considerable amount of effort has been invested in the development of biosensors for the detection of pesticides, there is still a lack of a simple and low-cost platform that can reliably and sensitively detect their presence in real samples. Herein, an enzyme-based biosensor for the determination of both carbamate and organophosphorus pesticides is presented that is based on acetylcholinesterase (AChE) immobilized on commercially available screen-printed carbon electrodes (SPEs) modified with carbon black (CB), as a means to enhance their conductivity. Most interestingly, two different methodologies to deposit the enzyme onto the sensor surfaces were followed; strikingly different results were obtained depending on the family of pesticides under investigation. Furthermore, and towards the uniform application of the functionalization layer onto the SPEs' surfaces, the laser induced forward transfer (LIFT) technique was employed in conjunction with CB functionalization, which allowed a considerable improvement of the sensor's performance. Under the optimized conditions, the fabricated sensors can effectively detect carbofuran in a linear range from 1.1 × 10-9 to 2.3 × 10-8 mol/L, with a limit of detection equal to 0.6 × 10-9 mol/L and chlorpyrifos in a linear range from 0.7 × 10-9 up to 1.4 × 10-8 mol/L and a limit of detection 0.4 × 10-9 mol/L in buffer. The developed biosensor was also interrogated with olive oil samples, and was able to detect both pesticides at concentrations below 10 ppb, which is the maximum residue limit permitted by the European Food Safety Authority. This study explored the effect of vitamin C (Vit-C) administration on the reproductive function of adult male Wistar rats injected with boldenone undecylenate (BOL). Rats were randomly assigned into control, vehicle control, Vit-C (120 mg/kg b.wt./day, orally), BOL (received 5 mg/kg b.wt./week, IM) and BOL+Vit-C-treated groups. After eight weeks, hormonal assay, semen evaluation, testicular enzymes, and antioxidants biomarkers were assessed. Besides, the histopathological and immunohistochemical investigations of the androgen receptor (AR) expression were performed. The results revealed that serum testosterone, acid phosphatase, sorbitol dehydrogenase, sperm abnormalities, and testicular malondialdehyde were significantly incremented in the BOL-treated group. Testicular weight, sperm count, and sperm motility together with serum levels of luteinizing hormone, follicle-stimulating hormone, and estradiol, and testicular testosterone, catalase, superoxide dismutase, and reduced glutathione showed a significant decrease following BOL treatment. Besides, the AR immunoreactivity was significantly decreased in testicular tissues. Vit-C co-administration with BOL significantly relieved the BOL-induced sperm abnormalities, reduced sperm motility, testicular enzyme leakage, and oxidative damage. However, Vit-C could rescue neither BOL-induced hormonal disturbances nor AR down-regulation. The results provide further insight into the mechanisms of BOL-induced reproductive dysfunction and its partial recovery by Vit-C. The results provide further insight into the mechanisms of BOL-induced reproductive dysfunction and its partial recovery by Vit-C.Antioxidants are essential in regulating various physiological functions and oxidative deterioration. Over the past decades, many researchers have paid attention to antioxidants and studied the screening of antioxidants from natural products and their utilization for treatments in diverse pathological conditions. Nowadays, as printing technology progresses, its influence in the field of biomedicine is growing significantly. The printing technology has many advantages. Especially, the capability of designing sophisticated platforms is useful to detect antioxidants in various samples. The high flexibility of 3D printing technology is advantageous to create geometries for customized patient treatment. Recently, there has been increasing use of antioxidant materials for this purpose. This review provides a comprehensive overview of recent advances in printing technology-based assays to detect antioxidants and 3D printing-based antioxidant therapy in the field of tissue engineering. This review is divided into two sections. The first section highlights colorimetric assays using the inkjet-printing methods and electrochemical assays using screen-printing techniques for the determination of antioxidants. Alternative screen-printing techniques, such as xurography, roller-pen writing, stamp contact printing, and laser-scribing, are described. https://www.selleckchem.com/products/AZD2281(Olaparib).html The second section summarizes the recent literature that reports antioxidant-based therapy using 3D printing in skin therapeutics, tissue mimetic 3D cultures, and bone tissue engineering.The use of anticorrosive coatings has been a powerful method to be applied on the surface of metallic materials to mitigate the corrosive process. In this study, the focus is composite coatings that are commonly used on the internal surface of storage tanks in petrochemical industries. The development of non-destructive methods for inspection of faults in this field is desired due to unhealthy access and mainly because undercoating corrosion is difficult to detect by visual inspection. Pulsed thermography (PT) was employed to detect undercoating corrosion and adhesion loss of anticorrosive composite coatings defects. Additionally, a computational simulation model was developed to complement the PT tests. According to the experimental results, PT was able to detect all types of defects evaluated. The results obtained by computational simulation were compared with experimental ones. Good correlation (similarity) was verified, regarding both the defect detection and thermal behavior, validating the developed model. Additionally, by reconstructing the thermal behavior according to the defect parameters evaluated in the study, it was estimated the limit of the remaining thickness of the defect for which it would be possible to obtain its detection using the pulsed modality.The aim was to systematically review and meta-analyze the current evidence for the effects of resistance training (RT) on blood pressure (BP) as the main outcome and body mass index (BMI) in children and adolescents. Two authors systematically searched the PubMed, SPORTDiscus, Web of Science Core Collection and EMBASE electronic databases. Inclusion criteria were (1) children and adolescents (aged 8 to 18 years); (2) intervention studies including RT and (3) outcome measures of BP and BMI. The selected studies were analyzed using the Cochrane Risk-of-Bias Tool. Eight articles met inclusion criteria totaling 571 participants. The mean age ranged from 9.3 to 15.9 years and the mean BMI of 29.34 (7.24) kg/m2). Meta-analysis indicated that RT reduced BMI significantly (mean difference (MD) -0.43 kg/m2 (95% CI -0.82, -0.03), P = 0.03; I2 = 5%) and a non-significant decrease in systolic BP (SBP) (MD -1.09 mmHg (95% CI -3.24, 1.07), P = 0.32; I2 = 67%) and diastolic BP (DBP) (MD -0.93 mmHg (95% CI -2.05, 0.19), P = 0.