https://www.selleckchem.com/products/cobimetinib-gdc-0973-rg7420.html P-type ATPases are integral membrane transporters that play important roles in transmembrane transport in plants. However, a comprehensive analysis of the P-type ATPase gene family has not been conducted in Chinese white pear (Pyrus bretschneideri) or other Rosaceae species. Here, we identified 419 P-type ATPase genes from seven Rosaceae species (Pyrus bretschneideri, Malus domestica, Prunus persica, Fragaria vesca, Prunus mume, Pyrus communis and Pyrus betulifolia). Structural and phylogenetic analyses revealed that P-type ATPase genes can be divided into five subfamilies. Different subfamilies have different conserved motifs and cis-acting elements, which may lead to functional divergence within one gene family. Dispersed duplication and whole-genome duplication may play critical roles in the expansion of the P-type ATPase family. Purifying selection was the primary force driving the evolution of P-type ATPase family genes. Based on the dynamic transcriptome analysis and transient transformation of Chinese white pear fruit, Pbr029767.1 in the P3A subfamily were found to be associated with malate accumulation during pear fruit development. Using a co-expression network, we identified several transcription factors that may have regulatory relationships with the P-type ATPase gene family. Overall, this study lays a solid foundation for understanding the evolution and functions of P-type ATPase genes in Chinese white pear and six other Rosaceae species. The present study reports the functional annotation of complete genome of methylotrophic bacterium Paracoccus sp. strain AK26. The 3.6 Mb genome with average GC content of 65.7% was distributed across five replicons; including chromosome (2.7 Mb) and four extrachromosomal replicons pAK1 (471Kb), pAK2 (189Kb), pAK3 (129Kb) and pAK4 (84 Kb). Interestingly, nearly 23% of the Cluster of Orthologous Group (COG) of proteins were annotated on extrachromosom