The distributions of chlorinated paraffins (CPs) in soils and their ecological effects attract much attention, while site-scale data are still scarce. In this study, a comprehensive investigation was performed to understand the CP distributions at a CP production plant brownfield site, as well as their effects on soil microbial community. Short-, medium- and long-chain CPs (SCCPs, MCCPs, LCCPs) were detected in most samples with total contents ranging ND-5,090, ND-6,670, and ND-1450 ng g-1 (dw), respectively. A CP-hotspot was observed 10 m beneath the synthesis workshop, indicating the downward migration of CPs. https://www.selleckchem.com/products/AZD2281(Olaparib).html The consistence of soil SCCP congener profiles with commercial product CP-52 suggested the leakage of CP products as the contamination source. Besides CPs, petroleum hydrocarbons (PHC) contamination also occurred beneath the synthesis workshop. Soil microbial community composition and diversity were significantly influenced by SCCPs (p less then 0.05) despite their lower contents compared to other concerned contaminants. Microbial network analysis indicated nonrandom co-occurrence patterns, with Acinetobacter, Brevibacterium, Corynebacterium, Microbacterium, Stenotrophomonas, and Variibacter as the keystone genera. Genera from the same module showed significant ecological links (p less then 0.05) and were involved in the degradation of PHCs and chlorinated organic contaminants. This study provides the first phylogenetic look at the microbial communities in CP contaminated soils, indicating that the long-term exposure to CPs and PHCs may lead to microbial group assemblages with the potential for degradation.In health-oriented air pollution control, it is vital to rank the contributions of different emission sources to the health risks posed by hazardous components in airborne fine particulate matters (PM2.5), such as trace metals. Towards this end, we investigated the PM2.5-associated metals in two densely populated regions of China, the Yangtze River Delta (YRD) and Pearl River Delta (PRD) regions, across land-use gradients. Using the positive matrix factorization (PMF) model, we performed an integrated source apportionment to quantify the contributions of the major source categories underlying metal-induced health risks with information on the bioaccessibility (using simulated lung fluid) and speciation (using synchrotron-based techniques) of metals. The results showed that the particulate trace metal profiles reflected the land-use gradient within each region, with the highest concentrations of anthropogenically enriched metals at the industrial sites in the study regions. The resulting carcinogenic risk thatframework.Ground-level ozone pollution has negative impacts on human health and vegetation and has increased rapidly across China. Various factors are implicated in the formation of ozone (e.g., meteorological factors, anthropogenic emissions), but their relative individual impact and the impact of interactions between these factors remains unclear. This study quantified the influence of specific meteorological conditions and anthropogenic precursor emissions and their interactions on ozone concentrations in Chinese cities using the geographic detector model (GeoDetector). Results revealed that the impacts of meteorological and anthropogenic factors and their interactions on ozone concentrations varied significantly at different spatial and temporal scales. Temperature was the dominant driver at the annual time scale, explaining 40% (q = 0.4) of the ground-level ozone concentration. Anthropogenic precursors and meteorological conditions had comparable effects on ozone concentrations in summer and winter in northern China. Interactions between all the factors can enhance effects. The interaction between meteorological factors and anthropogenic precursors had the strongest impact in summer. The results can be used to enhance our understanding of ozone pollution, to improve ozone prediction models, and to formulate pollution control measures.The present study is the first comprehensive monitoring of 13 selected endocrine disrupting compounds (EDCs) in untreated urban and industrial wastewater in Serbia to assess their impact on the Danube River basin and associated freshwaters used as sources for drinking water production in the area. Results showed that natural and synthetic estrogens were present in surface and wastewater at concentrations ranging from 0.1 to 64.8 ng L-1. Nevertheless, they were not detected in drinking water. For alkylphenols concentrations ranged from 1.1 to 78.3 ng L-1 in wastewater and from 0.1 to 37.2 ng L-1 in surface water, while in drinking water concentrations varied from 0.4 to 7.9 ng L-1. Bisphenol A (BPA) was the most abundant compound in all water types, with frequencies of detection ranging from 57% in drinking water, to 70% in surface and 84% in wastewater. Potential environmental risks were characterized by calculating the risk quotients (RQs) and the estrogenic activity of EDCs in waste, surface and drinking water samples, as an indicator of their potential detrimental effects. RQ values of estrone (E1) and estradiol (E2) were the highest, exceeding the threshold value of 1 in 60% of wastewater samples, while in surface water E1 displayed potential risks in only two samples. Total estrogenic activity (EEQt) surpassed the threshold of 1 ng E2 L-1 in about 67% of wastewater samples, and in 3 surface water samples. In drinking water, EEQt was below 1 ng L-1 in all samples.Efficient extracellular electron transport is a key for sufficient bioremediation of organoarsenic pollutants such as 4-hydroxy-3-nitrobenzenearsonic acid (roxarsone). The related apparent kinetics characteristics are essential for engineering practice of bioremediation activities and for full understanding the environmental fate of roxarsone, yet remains poorly understood. We report, to our knowledge, the first study of the electron transfer characteristics between roxarsone and participating S. oneidensis MR-1. The electron transfer rate during roxarsone biotransformation was estimated up to 3.1 × 106 electrons/cell/s, with its value being clearly associated with the apparent roxarsone concentration. Lowing roxarsone concentration extended the average separation distance between cells and neighboring roxarsone molecules and thereby augmented electric resistance as well as extended cell movement for foraging, thus reduced electron transfer rate. In addition, the presence of roxarsone significantly stimulated population growth of S.