The predator Asian hornet (Vespa velutina) represents one of the major threats to honeybee survival. Viral spillover from bee to wasp has been supposed in several studies, and this work aims to identify and study the virome of both insect species living simultaneously in the same foraging area. Transcriptomic analysis was performed on V. velutina and Apis mellifera samples, and replicative form of detected viruses was carried out by strand-specific RT-PCR. Overall, 6 and 9 different viral types were reported in V. velutina and A. mellifera, respectively, and five of these viruses were recorded in both hosts. Varroa destructor virus-1 and Cripavirus NB-1/2011/HUN (now classified as Triato-like virus) were the most represented viruses detected in both hosts, also in replicative form. In this investigation, Triato-like virus, as well as Aphis gossypii virus and Nora virus, was detected for the first time in honeybees. https://www.selleckchem.com/products/OSI027.html Concerning V. velutina, we report for the first time the recently detected honeybee La Jolla virus. A general high homology rate between genomes of shared viruses between V. velutina and A. mellifera suggests the efficient transmission of the virus from bee to wasp. In conclusion, our findings highlight the presence of several known and newly reported RNA viruses infecting A. mellifera and V. velutina. This confirms the environment role as an important source of infection and indicates the possibility of spillover from prey to predator.This study aims to determine the efficacy of Zinc finger protein ZBTB20 in treatment of post-infarction cardiac remodelling. For this purpose, left anterior descending (LAD) ligation was operated on mice to induce myocardial infarction (MI) with sham control group as contrast and adeno-associated virus (AAV9) system was used to deliver ZBTB20 to mouse heart by myocardial injection with vehicle-injected control group as contrast two weeks before MI surgery. Then four weeks after MI, vehicle-treated mice with left ventricular (LV) remodelling underwent deterioration of cardiac function, with symptoms of hypertrophy, interstitial fibrosis, inflammation and apoptosis. The vehicle-injected mice also showed increase of infarct size and decrease of survival rate. Meanwhile, the ZBTB20-overexpressed mice displayed improvement after MI. Moreover, the anti-apoptosis effect of ZBTB20 was further confirmed in H9c2 cells subjected to hypoxia in vitro. Further study suggested that ZBTB20 exerts cardioprotection by inhibiting tumour necrosis factor α/apoptosis signal-regulating kinase 1 (ASK1)/c-Jun N-terminal kinase 1/2 (JNK1/2) signalling, which was confirmed by shRNA-JNK adenoviruses transfection or a JNK activator in vitro as well as ASK1 overexpression in vivo. In summary, our data suggest that ZBTB20 could alleviate cardiac remodelling post-MI. Thus, administration of ZBTB20 can be considered as a promising treatment strategy for heart failure post-MI. Significance Statement ZBTB20 could alleviate cardiac remodelling post-MI via inhibition of ASK1/JNK1/2 signalling.The mechanisms leading to sarcopenia, the main cause for frailty in older adults, are still unclear. Autophagy and the ubiquitin-proteasome system (UPS) may play a role in mediating muscle protein breakdown related to sarcopenia. In addition to loss of muscle mass, compromised muscle performance observed in sarcopenic patients has been linked to muscle mitochondria dysfunction. Increased fat deposition and fat cell infiltration in muscle frequently seen in skeletal muscle of older adults may play an additional role for the pathogenesis of sarcopenia. Therefore, the first objective of this study was to understand differences in expression of genes related to autophagy, UPS, mitochondrial biogenesis, and fat metabolism in skeletal muscle of older adults compared with young adults. Our second objective was to determine the correlation between whole body protein kinetics (WBPK) and gene expression with age. Real-time quantitative PCR was used to determine the relative expression of targeted genes, and hierarchical regression analysis was used to determine if age had a moderating effect on the correlation between expression of targeted genes and WBPK. Increases in the expression of autophagy-related genes and fat metabolism-related genes were observed in muscle of older adults compared with young adults. In addition, age enhanced the negative correlations between mitochondrial biogenesis genes and net protein balance. These results suggest that dysregulated gene expression of mitochondrial biogenesis could play a role in muscle loss in older adults. Exercise training improves health outcomes in individuals with obesity (IO); however, it remains challenging for IO to adhere to exercise. Thus, it is critical to identify novel strategies that improve exercise tolerance (ET) and adherence in IO. Beetroot juice (BRJ), high in inorganic dietary nitrate, consistently improves exercise performance in athletes, individuals with cardiopulmonary diseases, and nonobese lean individuals. These improvements may be explained by reduced oxygen uptake (VO ) during exercise, enhanced blood flow, and greater mitochondrial efficiency. To date, we are aware of no studies that have compared the effects of BRJ, sodium nitrate (NaNO3), and nitrate-depleted BRJ (PLA) for improving ET and cardiometabolic health in IO. Determine if BRJ improves ET, exercise efficiency (EE), and cardiometabolic health in IO and identify possible mechanisms of action. Vascular hemodynamic, submaximal- and maximal-exercise VO , and time to exhaustion (TTE) were assessed in 16 participants 2.5hr following consumption of 1) BRJ, 2) NaNO , 3) PLA, or 4) CON. A significant treatment effect was observed for submaximal exercise VO (p=.003), and TTE (p<.001). Post hoc analyses revealed lower VO during submaximal exercise in BRJ compared to PLA (p=.009) NaNO3 (p=.042) and CON (0.009), equating to an average improvement of~7% with BRJ. TTE was greater for BRJ compared to other treatment arms, PLA (p=.008), NaNO3 (p=.038), and CON (p=<0.001), equating to~15% improvement with BRJ. No significant changes were observed for other outcomes. Consumption of BRJ improved EE during submaximal exercise by 7%, and TTE by 15% compared to other conditions. These results suggest that BRJ may improve EE and exercise tolerance in IO. Consumption of BRJ improved EE during submaximal exercise by 7%, and TTE by 15% compared to other conditions. These results suggest that BRJ may improve EE and exercise tolerance in IO.