Disrupted self-perception of the low back might contribute to chronic non-specific low back pain. The Fremantle back awareness questionnaire is a simple questionnaire to assess back specific self-perception. The questionnaire has recently been translated to German (FreBAQ-G). The aim was to further investigate the psychometric properties of the FreBAQ-G, to evaluate its cross cultural validity in patients with chronic non-specific LBP and to explore potential relationships between body perception, pain, disability and back pain beliefs. In this cross-sectional multicentre study, sample data were merged with data from the validation sample of the original English version to examine cross-cultural validity. Item Response Theory was used to explore psychometric properties and differential item function (DIF) to evaluate cross-cultural validity and item invariance. Correlations and multiple linear regression analyses were used to explore the relationship between altered back specific self- perception and back pain parameters. Two hundred seventy-two people with chronic low back pain completed the questionnaires. The FreBAQ-G showed good internal consistency (Cronbach's alpha = 0.84), good overall reliability (r = 0.84) and weak to moderate scalability (Loevinger Hj between 0.34 and 0.48). The questionnaire showed unidimensional properties with factor loadings between 0.57 and 0.80 and at least moderate correlations (r > 0.35) with pain intensity, pain related disability and fear avoidance beliefs (FABQ total - and subscores). https://www.selleckchem.com/products/sitravatinib-mgcd516.html Item and test properties of the FreBAQ-G are given. Only item 7 showed uniform DIF indicating acceptable cross-cultural validity. Our results indicate that the FreBAQ-G is a suitable questionnaire to measure back specific self-perception, and has comparable properties to the English-language version. Our results indicate that the FreBAQ-G is a suitable questionnaire to measure back specific self-perception, and has comparable properties to the English-language version. Recent studies have pointed out that arthroscopy, the commonly-used surgical procedure for meniscal tears, may lead to an elevated risk of knee osteoarthritis (KOA). The biomechanical factors of KOA can be clarified by the biomechanical analysis after arthroscopic partial meniscectomy (APM). This study aimed to elucidate the cartilage stress and meniscus displacement of the tibiofemoral joint under flexion and rotation loads after APM. A detailed finite element model of the knee bone, cartilage, meniscus, and major ligaments was established by combining computed tomography and magnetic resonance images. Vertical load and front load were applied to simulate different knee buckling angles. At the same time, by simulating flexion of different degrees and internal and external rotations, the stresses on tibiofemoral articular cartilage and meniscus displacement were evaluated. Generally, the contact stress on both the femoral tibial articular cartilage and the meniscus increased with the increased flexion degree. Moreover, the maximum stress on the tibial plateau gradually moved backward. The maximum position shift value of the lateral meniscus was larger than that of the medial meniscus. Our finite element model provides a realistic three-dimensional model to evaluate the influence of different joint range of motion and rotating tibiofemoral joint stress distribution. The decreased displacement of the medial meniscus may explain the higher pressure on the knee components. These characteristics of the medial tibiofemoral joint indicate the potential biomechanical risk of knee degeneration. Our finite element model provides a realistic three-dimensional model to evaluate the influence of different joint range of motion and rotating tibiofemoral joint stress distribution. The decreased displacement of the medial meniscus may explain the higher pressure on the knee components. These characteristics of the medial tibiofemoral joint indicate the potential biomechanical risk of knee degeneration. Giant cell tumor of bone is a benign, locally aggressive neoplasm. Surgical resection is the preferred treatment method. However, for cases in which resection poses an increased risk to the patient, denosumab (anti-RANKL monoclonal antibody) is considered. Secukinumab is an anti-IL-17 antibody that is used in psoriatic arthritis to reduce bone resorption and articular damage. One case of giant cell tumor of bone (GCTB) in a patient treated with secukinumab for psoriatic arthritis demonstrated findings significant for intra-lesional calcifications. Histologic examination showed ossification, new bone formation, and remodeling. A paucity of osteoclast type giant cells was noted. Real-time quantitative polymerase-chain-reaction (qRT-PCR) analysis revealed decreased osteoclast function compared to treatment-naive GCTB. Secukinumab may play a role in bone remodeling for GCTB. Radiologists, surgeons, and pathologists should be aware of this interaction, which can cause lesional ossification. Further research is required to define the therapeutic potential of this drug for GCTB and osteolytic disease. Secukinumab may play a role in bone remodeling for GCTB. Radiologists, surgeons, and pathologists should be aware of this interaction, which can cause lesional ossification. Further research is required to define the therapeutic potential of this drug for GCTB and osteolytic disease. Testing is crucial for COVID-19 response and management, however, WHO's preparedness index omits estimations of actual testing capabilities, which influence the ability to contain, mitigate and clinically manage infectious diseases. With one of the highest excess death rates globally, Ecuador had a comparatively low number of confirmed COVID-19 cases, which may have been influenced by limited availability of data for decision-making due to low laboratory capacity. We examine de-identified data on 55,063 individuals with suspected COVID-19 between February 27 and April 30, 2020 included in the RT-PCR testing database collected by the Ministry of Health. Processing times and rates per province, and the number of pending tests, were tallied cumulatively. We assessed the relationship between sample shipping, laboratory capacity and case completion using a negative binomial generalized linear model. The national average time for case completion was 3 days; 12.1% of samples took ≥10 days to complete; the national average daily backlog was 29.