In October 2012, a maternal pertussis vaccination programme was implemented in England following an increased incidence and mortality in infants. We evaluated the cost-effectiveness of the programme by comparing pertussis-related infant hospitalisations and deaths in 2012-2017 with non-vaccination scenarios. Despite considerable uncertainties, findings support the cost-effectiveness of the programme. © Crown copyright 2020.Guanine-rich regions of the human genome can adopt non-canonical secondary structures. Their role in regulating gene expression has turned them into promising targets for therapeutic intervention. Ligands based on polyaromatic moieties are especially suitable for targeting G-quadruplexes utilizing their size complementarity to interact with the large exposed surface area of four guanine bases. https://www.selleckchem.com/products/idf-11774.html A predictable way of (de)stabilizing specific G-quadruplex structures through efficient base stacking of polyaromatic functional groups could become a valuable tool in our therapeutic arsenal. We have investigated the effect of pyrene-modified uridine nucleotides incorporated at several positions of the thrombin binding aptamer (TBA) as a model system. Characterization using spectroscopic and biophysical methods provided important insights into modes of interaction between pyrene groups and the G-quadruplex core as well as (de)stabilization by enthalpic and entropic contributions. NMR data demonstrated that incorporation of pyrene group into G-rich oligonucleotide such as TBA may result in significant changes in 3D structure such as formation of novel dimeric topology. Site specific structural changes induced by stacking of the pyrene moiety on nearby nucleobases corelate with distinct thrombin binding affinities and increased resistance against nuclease degradation. © The Author(s) 2020. Published by Oxford University Press on behalf of Nucleic Acids Research.BACKGROUND AND AIMS Despite their abundant odd-ploidy (2n = 5x = 35), dogroses (Rosa sect. Caninae) are capable of sexual reproduction due to their unique meiosis. During canina meiosis, two sets of chromosomes form bivalents and are transmitted by male and female gametes, whereas the remaining chromosomes form univalents and are exclusively transmitted by the egg cells. Thus, the evolution of chromosomes is expected to be driven by their behaviour during meiosis. METHODS To gain insight into differential chromosome evolution, fluorescence in situ hybridization (FISH) was conducted for mitotic and meiotic chromosomes in four dogroses (two subsections) using satellite and ribosomal DNA probes. By exploiting high-throughput sequencing data, we determined the abundance and diversity of the satellite repeats in the genus Rosa by analysing twenty pentaploid, tetraploid and diploid species in total. KEY RESULTS A pericentromeric satellite repeat, CANR4, was found in all members of the genus Rosa, including the basal subgenera Hulthemia and Hesperhodos. The satellite was distributed across multiple chromosomes (5-20 sites per mitotic cell), and its genomic abundance was higher in pentaploid dogroses (2.3%) than in non-dogrose species (1.3%). In dogrose meiosis, univalent chromosomes were markedly enriched in CANR4 repeats based on both the number and the intensity of the signals compared to bivalent-forming chromosomes. Single-nucleotide polymorphisms and cluster analysis revealed high intragenomic homogeneity of the satellite in dogrose genomes. CONCLUSIONS The CANR4 satellite arose early in the evolution of the genus Rosa. Its high content and extraordinary homogeneity in dogrose genomes is explained by its recent amplification in non-recombining chromosomes. We hypothesize that satellite DNA expansion may contribute to the divergence of univalent chromosomes in Rosa species with non-symmetrical meiosis. © The Author(s) 2020. Published by Oxford University Press on behalf of the Annals of Botany Company.This work was focused on the effects of Mn doping on the phase stability and magnetic performance of SmCo7 based alloys. Particularly, the role of Mn in the improvement of the magnetization of the SmCo7 matrix, as well as its mechanisms, was examined in detail. The metastable SmCo7 single phase was well stabilized by the appropriate content of Mn doping and nanostructuring of the alloy. It was discovered that the non-ferromagnetic element Mn can enhance magnetization effectively. By tailoring the Mn content and nanostructuring, the prepared SmCo7-xMnx alloy achieved good comprehensive magnetic properties. The mechanisms for the magnetization enhancement by Mn and the coupled effect of Mn doping and nanostructuring on the magnetic properties were proposed based on the characterization of magnetic structures and the model calculations of magnetic moments.A novel form of nematic gel (N-gel) wherein bright flower-like domains (BFDs) rich in gelator fibres are embedded in a matrix of liquid crystal (LC) molecules has been reported. These gels which we denote as inverse N-gels are unlike typical N-gels in which the LC is encapsulated within an aggregated network of gelator molecules. The self-organization of the helical gelator fibres within the BFDs leads to the creation of localized toron-like structures that are topologically protected due to their skyrmion director profile. Optical and confocal microscopy have been used to deduce the LC director configuration, in order to understand possible intermolecular interactions that can lead to the formation of the twisted structures and the inverse N-gels.Mononuclear Pd(ii) complexes with two leaving groups are able to promote His-, Cys- and Met-orientated peptide hydrolysis, and exploring the peptide cleavage behavior of a novel Pd(ii) complex may provide "Omics" studies a promising artificial protease. In this study, a novel binuclear Pd(ii) complex [Pd2(μ-O-L-H)(μ-Cl)](ClO4)2 (L = 2,6-bis(N-2'-aminoethylaminomethyl)-p-cresol) was constructed to promote peptide hydrolysis. Although each Pd(ii) center has only one leaving group (Cl) in this complex, electrophoresis and LC-MS-MS determination discloses that this complex enables myoglobin cleavage on the second upstream peptide bond from His and Met. A study on peptide cleavage also confirms the His- and Met-orientated peptide hydrolysis, yet no Cys-orientated hydrolysis was observed, although the cysteine-induced peptide/complex binding is distinct. Cysteine in the peptide even prevents the complex from promoting His-orientated hydrolysis, whereas the oxidized cysteine residue recovers the His-orientated hydrolysis.