Depending on the substitution pattern and stereochemistry, 1,3-dioxanes 1 with an aminoethyl moiety in 4-position represent potent σ1 receptor antagonists. In order to increase the stability, a cyclohexane ring first replaced the acetalic 1, 3-dioxane ring of 1. A large set of aminoethyl substituted cyclohexane derivatives was prepared in a six-step synthesis. All enantiomers and diastereomers were separated by chiral HPLC at the stage of the primary alcohol 7, and their absolute configuration was determined by CD spectroscopy. Neither the relative nor the absolute configuration had a large impact on the σ1 affinity. The highest σ1 affinity was found for cis-configured benzylamines (1R,3S)-11 (Ki = 0.61 nM) and (1S,3R)-11 (Ki = 1.3 nM). Molecular dynamics simulations showed that binding of (1R,3S)-11 at the σ1 receptor is stabilized by the typical polar interaction of the protonated amino moiety with the carboxy group of E172 which is optimally oriented by an H-bond interaction with Y103. https://www.selleckchem.com/products/ipi-549.html The lipophilic interaction of I124 with the N-substituent also contributes to the high σ1 affinity of the benzylamines. The antagonistic activity was determined in a Ca2+ influx assay in retinal ganglion cells. The enantiomeric cis-configured benzylamines (1R,3S)-11 and (1S,3R)-11 were able to inhibit the growth of DU145 cells, a highly aggressive human prostate tumor cell line. Moreover, cis-11 could also inhibit the growth of further human tumor cells expressing σ1 receptors. The experimentally determined logD7.4 value of 3.13 for (1R,3S)-11 is in a promising range regarding membrane penetration. After incubation with mouse liver microsomes and NADPH for 90 min, 43% of the parent (1R,3S)-11 remained unchanged, indicating intermediate metabolic stability. Altogether, nine metabolites including one glutathione adduct were detected by means of LC-MS analysis.Oxidative stress and inflammation are significant risk factors for neurodegenerative disease. The Keap1-Nrf2-ARE pathway is one of the most promising defensive systems against oxidative stress. Here, dozens of piperlongumine analogues were designed, synthesized, and tested on PC12 cells to examine neuroprotective effects against H2O2 and 6-OHDA induced damage. Among them, 6d was found to be able to alleviate the accumulation of ROS, inhibit the production of NO and downregulate the level of IL-6, which indicated its potential antioxidant and anti-inflammatory activity. Further studies proved that 6d could activate Nrf2 signaling pathway, induce the translocation of Nrf2 from cell cytosol to nucleus and upregulate the related phase II antioxidant enzymes including NQO1, HO-1, GCLC, GCLM and TrxR1. These results confirmed that 6d exerted antioxidant and anti-inflammatory activities by activating Nrf2 signaling pathway. Moreover, the parallel artificial membrane permeability assay indicated that 6d can cross the blood-brain barrier. In general, 6d is promising for further development as a therapeutic drug against oxidative stress and inflammation related neurodegenerative disorders.Medicinal plants are well-known in affording clinically useful agents, with rich medicinal values by combining with disease targets through various mechanisms. Plant secondary metabolites as lead compounds lay the foundation for the discovery and development of new drugs in disease treatment. Genus Uncaria from Rubiaceae family is a significant plant source of active alkaloids, with anti-hypertensive, sedative, anti-Alzheimer's disease, anti-drug addiction and anti-inflammatory effects. This review summarizes and discuss the research progress of Uncaria based on alkaloids in the past 15 years, mainly in the past 5 years, including biosynthesis, phytochemistry, pharmacology and structural chemistry. Among, focusing on representative compounds rhynchophylline and isorhynchophylline, the pharmacological activities surrounding the central nervous system and cardiovascular system are described in detail. On the basis of case studies, this article provides a brief overview of the synthesis and analogues of representative compounds types. In summary, this review provides an early basis for further searching for new targets and activities, discussing the mechanisms of pharmacological activity and studying the structure-activity relationships of active molecules.Leishmaniasis constitutes a severe public health problem, with an estimated prevalence of 12 million cases. This potentially fatal disease has a worldwide distribution and in 2012, the fatal Visceral Leishmaniasis (VL) was declared as new emerging disease in Europe, mainly due to global warming, with expected important public health impact. The available treatments are toxic, costly or lead to parasite resistance, thus there is an urgent need for new drugs with new mechanism of action. Previously, we reported the discovery of CTN1122, a potent imidazo[1,2-a]pyrazine-based antileishmanial hit compound targeting L-CK1.2 at low micromolar ranges. Here, we described structurally related, safe and selective compounds endowed with antiparasitic properties, better than miltefosine, the reference therapy by oral route. L-CK1.2 homology model gave the first structural explanations of the role of 4-pyridyl (CTN1122) and 2-aminopyrimidin-4-yl (compound 21) moieties, at the position 3 of the central core, in the low micromolar to nanomolar L-CK1.2 inhibition, whereas N-methylpyrazole derivative 11 remained inactive against the parasite kinase.Cancer has been the second heath killer being next only to cardiovascular diseases in human society. Although many efforts have been taken for cancer therapy and many achievements have been yielded in the diagnosis and treatment of cancer, the current first-line anti-cancer agents are insufficient owing to the emergence of multi-drug resistance and side effects. Therefore, it is urgent to develop new anti-cancer agents with high activity and low toxicity. 2-Aminothiazole is a class of important scaffold which widely distributes in many natural and synthetic compounds with many pharmacological effects including the potential anti-cancer activity. In this review, we summarized the recent progress of 2-aminothiazole as a privileged scaffold for the discovery of anti-cancer agents based on biological targets, such as tubulin protein, histone acetylase/histone deacetylase (HAT/HDAC), phosphatidylinositol 3-kinases (PI3Ks), Src/Abl kinase, BRAF kinase, epidermal growth factor receptor (EGFR) kinase and sphingosine kinase (SphK), and also investigated the structure-activity relationships (SARs) of most compounds.