. This finding may highlight the important role of selenoproteins (especially GPXs) in preventing negative consequences of over-production of free radicals and inflammatory cytokines during gestation and at births.Eugenol-loaded chitosan emulsion (ELCE) has been proved to have an excellent antibacterial property. In this study, the texture of ELCE-treated hairtail was found to be better than that of the control group. The method of iTRAQ labeled quantitative proteome analysis was used to clarify the mechanism for the phenomenon that ELCE retained the texture of chilled hairtail at the molecular level. Compared to the protein composition at the starting point of storage, for ELCE-treated and control groups, 277 and 187 proteins were selected as differential proteins for ELCE-treated hairtail, respectively. For treated and control groups at the endpoint of storage, myosin heavy chain, slow myosin heavy chain 2, and myosin were the top 3 significantly high content proteins of ELCE-treated hairtail, suggesting a better texture from the view of structure-related proteins. By preventing microbial degradation of structural proteins, ELCE kept the texture of hairtail, providing customers with high-quality hairtail.Therapeutic drug monitoring (TDM) is important for many therapeutic regimens and has particular relevance for anticancer drugs which often have serious effects and whose optimum dosage can vary significantly between different patients. Many of the features of surface enhanced (resonance) Raman spectroscopy (SE(R)RS) suggest it should be very suitable for TDM of anticancer drugs and some initial studies which explore the potential of SE(R)RS for TDM of anticancer drugs have been published. This review brings this work together in an attempt to draw some general observations about key aspects of the approach, including the nature of the substrate used, matrix interference effects and factors governing adsorption of the target molecules onto the enhancing surface. There is now sufficient evidence to suggest that none of these pose real difficulties in the context of TDM. However, some issues, particularly the need to carry out multiplex measurements for TDM of combination therapies, have yet to be addressed.Three different malachite green leuco derivatives (MG-Xs) are incorporated in liposomes. In all three cases, a substituent (X) is covalently linked to the central carbon atom, abbreviated as MG-OH, MG-OCH3, and MG-CN. The three MG-X compounds are solubilized separately in liposome membranes and become cationic (MG+) and water soluble under acidic conditions. MG+ is consequently released from the liposome to the aqueous exterior. Their release behavior corresponds to their ionization ability MG-OH > MG-OCH3 > MG-CN. The cellular uptake of the liposomes, the cytotoxic effect, and the location of MG+ in cancer cells are investigated using murine cells derived from colon cancer (Colon 26 cells) and human embryonic kidney cells (HEK 293 cells). The toxic effect on cancer cells is correlated to the ionization ability of MG-Xs. https://www.selleckchem.com/products/epoxomicin-bu-4061t.html The liposomes effectively deliver MG+via the endocytic pathway, resulting in the cytotoxicity of liposomes containing MG-OH which is higher than that of free MG-OH and MG+. The difference in the phospholipids constituting the liposome membranes barely had an effect on the ionization ratio and the cytotoxicity of MG-OH. Confocal fluorescence microscopic observations revealed that MG+ is ultimately transported into the nuclei after being released in acidic cellular compartments.In the present work, we have studied the effect of ammonia and formic acid on the kinetic stability of sulfurous acid using high level ab initio calculations. Our investigation reveals that the decomposition reaction of sulfurous acid becomes barrierless in the presence of both ammonia and formic acid. The half-life of the isolated sulfurous acid is estimated to be ∼20 days at room temperature, which becomes only ∼4.0 × 10-3 s and ∼7.08 × 102 s in the presence of ammonia and formic acid, respectively. These results indicate that, in the presence of ammonia, the stability of sulfurous acid reduces substantially at room temperature. The temperature dependency of the rate constant values indicates that, in the presence of ammonia and formic acid, the reaction has a negative activation energy, while the uncatalyzed and water catalyzed channels have a positive activation energy. We have also studied the pressure dependency of the catalyzed reaction, which suggests that the ammonia catalyzed channel is most sensitive towards the pressure change, as the values of the bimolecular rate constant (kbi) for this channel were found to be increased by an order of magnitude on going from 0.1 to 10 atm of pressure. Whereas, for the FA and WM catalyzed channels the changes in kbi with pressure were negligible.In this study, soluble dietary fiber (SDF, including oligosaccharides and polysaccharides) of soybean residue (SR) fermented by Neurospora crassa was used as a research object. In vitro fermentation technology was used to analyze the fermentation properties of SDF from fermented soybean residue (FSR). Moreover, the effects of SDF from FSR on the composition and diversity of intestinal microflora of rats were studied by high-throughput sequencing technology. Results showed that the SDF content of fermented soybean residue was 27.21%. The addition of SDF in the range 2 to 10 g L-1 could increase the levels of gas production and short-chain fatty acids (SCFAs), as well as decrease the pH and ammonia N concentration after 24 h fermentation in the fermentation broth compared with the control group (p less then 0.05). The animal-based experiments showed that Bacteroidetes and Firmicutes were the major dominant phyla in all the groups. Compared with the control group, oligosaccharides and polysaccharides of FSR changed the relative abundance and diversity of the bacterial community, and increased the numbers of beneficial flora, such as Prevotellaceae and Lactobacillales. It was shown that SDF of SR fermented by Neurospora crassa had great effects on the intestinal environment and the composition of intestinal flora in rats.