In recent years, urban and industrial development initiatives at Puducherry and Diu such as tourism, shipping, and fisheries have led to sediment contamination by trace metals, and contributed to this investigation that extended from 2016 to 2017. Strong factor loadings of Cd (0.94), Ni (0.84), Al (0.84), Cr (0.83), Co (0.82), and Fe (0.78) illustrated the variability at Puducherry, whereas Cr (0.88), Cd (0.86), Ni (0.83), Co (0.77), Cu (0.77), and Fe (0.77) showed variability at Diu. The mean rank order distribution of the top three metals in sediment was Fe > Al > Mn, which exhibited higher variability. The highest contamination factor was observed for Cd at Diu, whereas the lowest was observed at Puducherry for Al. Similarly, the risk index also exhibited considerable risk which could be attributed to Cd contamination in the sediment at Diu compared with that at Puducherry. The results obtained are essential to establish a reference for better comparison and management of the tropical environments.The evolution of novel enzymes has fueled the diversification of life on earth for billions of years. Insights into events that set the stage for the evolution of a new enzyme can be obtained from ancestral reconstruction and laboratory evolution. Ancestral reconstruction can reveal the emergence of a promiscuous activity in a pre-existing protein and the impact of subsequent mutations that enhance a new activity. Laboratory evolution provides a more holistic view by revealing mutations elsewhere in the genome that indirectly enhance the level of a newly important enzymatic activity. This review will highlight recent studies that probe the early stages of the evolution of a new enzyme from these complementary points of view.N-(4-(substituted)-3-(trifluoromethyl) phenyl) isobutyramides and their N-ethyl analogues (flutamides) are versatile scaffolds with a wide spectrum of biological activities. A series of new N-(4-(substituted)-3-(trifluoromethyl) phenyl) isobutyramides (8a-t) and their N-ethyl analogous (9a-t) were synthesized and characterized. The inhibitory potential of the synthesized compounds on the viability of three human cancer cell lines HEP3BPN 11 (liver), MDA-MB 453 (breast), and HL 60 (leukemia) were assessed. Among all the compounds 8 L, 8q, 9n and 9p showed higher inhibitory activity on the viability of HL 60 than the standard methotrexate. These lead molecules were then tested for their potential to inhibit the activity of proangiogenic cytokines. The compound 9n showed significantly better inhibition against two cytokines viz. TNFα and Leptin as compared to the standard suramin, while 9p has activity comparable to suramin against IGF1, VEGF, FGFb, and Leptin. The 8q is found to be strong antiangiogenic agent against IGF1, VEGF and TGFβ; while 8 L has showed activity against TNFα, VEGF, and Leptin inhibition. Furthermore antioxidant potential of 8a-t and 9a-t compounds was screened using DPPH, OH and SOR radical scavenging activities. The OH radical scavenging activity of 8c and DPPH activities of 9n as well as 9o are significant as compared to respective standards ascorbic acid and α-tocopherol. The 8c, 9p and 9 h have also exhibited potential antioxidant activity. Additionally, we present in silico molecular docking data to provide the structural rationale of observed TNFα inhibition against newly synthesized compounds. Overall, the synthesized flutamide derivatives have not only anticancer activity, but also possess dual inhibitory effect (anti-angiogenesis and antioxidant) and hence can act as a promising avenue to develop further anticancer agents. Numerous long non-coding RNAs (lncRNAs) are reported to affect the progression of multiple myeloma (MM). This study is aimed to explore the role and downstream mechanism of lncRNA LINC01003 in MM. Xenograft tumor assay was used to assess the function of LINC01003 in MM in vivo. The mRNA expression levels of LINC01003, miR-33a-5p, and PIM1 were determined by quantitative real-time polymerase chain reaction. Cell viability was examined by MTT assay. Relative protein levels of apoptosis-related factors (Bcl-2 and Bax) and proviral integration site of the Moloney leukemia virus kinase 1 (PIM1) were detected via western blot. Adhesion-related proteins were measured by Enzyme-linked immunosorbent assay was used to determine the levels of adhesion-related proteins. Besides, the target relation among LINC01003, miR-33a-5p and PIM1 was tested via dual-luciferase reporter assay. Low expression of LINC01003 was observed in MM cell lines and peripheral blood samples of MM patients. Both LINC01003 up-regulation and miR-33a-5p down-regulation repressed cell viability and adhesion, and promoted apoptosis of MM cells. Moreover, LINC01003 suppressed the growth of xenograft tumor in mice. https://www.selleckchem.com/products/sitravatinib-mgcd516.html We then identified miR-33a-5p as a downstream target of LINC01003, and confirmed that PIM1 was a direct target gene of miR-33a-5p. Both high expression of miR-33a-5p and low expression of PIM1 reversed the suppressive effects of LINC01003 overexpression on cell adhesion and viability, and the promoting effect on apoptosis in MM cells. LINC01003 functioned as a sponge of miR-33a-5p to inhibit the development MM by regulating PIM1 expression. LINC01003 functioned as a sponge of miR-33a-5p to inhibit the development MM by regulating PIM1 expression. Neutralization tests (NT) are the gold standard for detecting and quantifying anti-SARS-CoV-2 neutralizing antibodies (NAb), but their complexity restricts them to research settings or reference laboratories. Antibodies against S protein receptor binding domain (RBD) have been shown to confer a neutralizing activity against SARS-CoV-2. Assays quantitatively measuring anti-S1-RBD-SARS-CoV-2 antibodies could be of great value for NAb screening of potential donors for convalescent-phase plasma therapy, assessing natural or vaccine-induced immunity, stratifying individuals for vaccine receipt, and documenting vaccine response. Elecsys Anti-SARS-CoV-2 S (Elecsys-S), a high-throughput automated electrochemiluminescence double-antigen sandwich immunoassay for quantitative measurement of pan-anti-S1-RBD-SARS-CoV-2 antibodies, was evaluated against NT on 357 patients with PCR-confirmed SARS-CoV-2 infection. NT was performed in a BSL-3 laboratory using a Slovenian SARS-CoV-2 isolate; the NT titer ≥120 was considered positive.