To determine whether blocking the neonatal Fc receptor (FcRn) during gestation with an anti-FcRn monoclonal antibody (mAb) reduces transfer of pathogenic maternal antibodies in utero and decreases the likelihood of maternal antibody-mediated neonatal disease in the offspring. Using a previously established maternal-to-fetal transfer mouse model of arthrogryposis multiplex congenita (AMC), we assessed the effect of 4470, an anti-FcRn mAb, on the transfer of total human immunoglobulin G (IgG) and specific acetylcholine receptor (AChR)-antibodies from mother to fetus, as well as its effect on the prevention of neurodevelopmental abnormalities in the offspring. Offspring of pregnant dams treated with 4470 during gestation showed a substantial reduction in total human IgG and AChR antibody levels compared with those treated with the isotype mAb control. Treatment with 4470 was also associated with a significant reduction in AMC-IgG-induced deformities (limb or spinal curve malformations) when compared with mAb control-exposed embryos and a nonsignificant increase in the percentage of fetuses showing spontaneous movements. 4470 exposure during pregnancy was not associated with changes in general parameters of maternal well-being or fetal development; indeed, male neonates showed faster weight gain and shorter time to reach developmental milestones. FcRn blockade is a promising therapeutic strategy to prevent the occurrence of AMC and other human maternal autoantibody-related diseases in the offspring. FcRn blockade is a promising therapeutic strategy to prevent the occurrence of AMC and other human maternal autoantibody-related diseases in the offspring.Guanine-rich DNA and RNA sequences can fold into noncanonical nucleic acid structures called G-quadruplexes (G4s). Since the discovery that these structures may act as scaffolds for the binding of specific ligands, G4s aroused the attention of a growing number of scientists. The versatile roles of G4 structures in viral replication, transcription, and translation suggest direct applications in therapy or diagnostics. G4-interacting molecules (proteins or small molecules) may also affect the balance between latent and lytic phases, and increasing evidence reveals that G4s are implicated in generally suppressing viral processes, such as replication, transcription, translation, or reverse transcription. In this review, we focus on the discovery of G4s in viruses and the role of G4 ligands in the antiviral drug discovery process. After assessing the role of viral G4s, we argue that host G4s participate in immune modulation, viral tumorigenesis, cellular pathways involved in virus maturation, and DNA integration of viral genomes, which can be potentially employed for antiviral therapeutics. Furthermore, we scrutinize the impediments and shortcomings in the process of studying G4 ligands and drug discovery. Finally, some unanswered questions regarding viral G4s are highlighted for prospective future projects. SIGNIFICANCE STATEMENT G-quadruplexes (G4s) are noncanonical nucleic acid structures that have gained increasing recognition during the last few decades. First identified as relevant targets in oncology, their importance in virology is now increasingly clear. A number of G-quadruplex ligands are known viral transcription and replication are the main targets of these ligands. Both viral and cellular G4s may be targeted; this review embraces the different aspects of G-quadruplexes in both host and viral contexts. The shortcomings of synucleinopathy-based Parkinson disease staging highlight the need for systematic clinicopathologic elucidation and biomarkers. In this study, we investigated associations of proteinopathy and inflammation markers with changes in gray matter volume that accompany Parkinson disease progression. We prospectively enrolled 42 patients with idiopathic Parkinson disease, subdivided into early-/late-stage groups and 27 healthy controls. https://www.selleckchem.com/products/sr59230a.html Parkinson disease severity and participants' functional and cognitive performance were evaluated. Peripheral plasma α-synuclein, β-amyloid , and tau were quantified with immunomagnetic reduction assays, and nuclear DNA by polymerase chain reaction, and regional gray matter volumes were determined by MR imaging. Statistical tests identified stage-specific biomarkers and gray matter volume patterns in the early-stage Parkinson disease, late-stage Parkinson disease, and control groups. Correlations between gray matter volume atrophy, plasma biomarkers, Parkinsonvered stage-specific correlations among proteinopathy, inflammation makers, topographic gray matter volume patterns, and cognitive performance that accompanied Parkinson disease progression. Identifying associations linking peripheral plasma biomarkers, gray matter volume, and clinical status in Parkinson disease may facilitate earlier diagnosis and improve prognostic accuracy. Identifying associations linking peripheral plasma biomarkers, gray matter volume, and clinical status in Parkinson disease may facilitate earlier diagnosis and improve prognostic accuracy. Disproportionately enlarged subarachnoid space hydrocephalus is a specific radiologic marker for idiopathic normal pressure hydrocephalus. However, controversy exists regarding the prognostic utility of disproportionately enlarged subarachnoid space hydrocephalus. Our aim was to evaluate the prevalence of disproportionately enlarged subarachnoid space hydrocephalus in idiopathic normal pressure hydrocephalus and its predictive utility regarding prognosis in patients treated with ventriculoperitoneal shunt surgery. We used MEDLINE and EMBASE databases. We searched for studies that reported the prevalence or the diagnostic performance of disproportionately enlarged subarachnoid space hydrocephalus in predicting treatment response. The pooled prevalence of disproportionately enlarged subarachnoid space hydrocephalus was obtained. Pooled sensitivity, specificity, and area under the curve of disproportionately enlarged subarachnoid space hydrocephalus to predict treatment response were obtained. Subgroup and sensitivity analyses were performed to explain heterogeneity among the studies.