https://www.selleckchem.com/products/XAV-939.html The obtained results demonstrate the potential of this glycopeptide conjugate-derived platform in exploiting the intriguing properties of carbohydrates in a more structurally maneuverable fashion.A breakthrough utilizing an anionic redox reaction (O2-/On-) for charge compensation has led to the development of high-energy cathode materials in sodium-ion batteries. However, its reaction results in a large voltage hysteresis due to the structural degradation arising from an oxygen loss. Herein, an interesting P2-type Mn-based compound exhibits a distinct two-phase behavior preserving a high-potential anionic redox (≈4.2 V vs Na+/Na) even during the subsequent cycling. Through a systematic series of experimental characterizations and theoretical calculations, the anionic redox reaction originating from O 2p-electron and the reversible unmixing of Na-rich and Na-poor phases are confirmed in detail. In light of the combined study, a critical role of the anion-redox-induced two-phase reaction in the positive-negative point of view is demonstrated, suggesting a rational design principle considering the phase separation and lattice mismatch. Furthermore, these results provide an exciting approach for utilizing the high-voltage feature in Mn-based layered cathode materials that are charge-compensated by an anionic redox reaction.Biohybrid microswimmers exploit the swimming and navigation of a motile microorganism to target and deliver cargo molecules in a wide range of biomedical applications. Medical biohybrid microswimmers suffer from low manufacturing yields, which would significantly limit their potential applications. In the present study, a biohybrid design strategy is reported, where a thin and soft uniform coating layer is noncovalently assembled around a motile microorganism. Chlamydomonas reinhardtii (a single-cell green alga) is used in the design as a biological model microorganism along with polymer-nanoparticle m