Extensive utilization of silver nanoparticles (NPs) in agricultural products results in their interaction with other chemicals in the environment. To study the combined effects of silver NPs with nicotinic acid and potassium nitrate (KNO3), a gel-free/label-free proteomic technique was used. Root length/weight and hypocotyl length/weight of soybean were enhanced by silver NPs mixed with nicotinic acid and KNO3. Out of a total 6340 identified proteins, 351 proteins were significantly changed, out of which 247 and 104 proteins increased and decreased, respectively. Differentially changed proteins were predominantly associated with protein degradation and synthesis according to the functional categorization. Protein-degradation-related proteins mainly consisted of the proteasome degradation pathway. The cell death was significantly higher in the root tips of soybean under the combined treatment compared to flooding stress. Accumulation of calnexin/calreticulin and glycoproteins was significantly increased under flooding with silver NPs, nicotinic acid, and KNO3. Growth of soybean seedlings with silver NPs, nicotinic acid, and KNO3 was improved under flooding stress. These results suggest that the combined mixture of silver NPs, nicotinic acid, and KNO3 causes positive effects on soybean seedling by regulating the protein quality control for the mis-folded proteins in the endoplasmic reticulum. Therefore, it might improve the growth of soybean under flooding stress.Adjuvant chemoradiotherapy is a standard treatment option for glioblastoma multiforme (GBM). Despite intensive care, recurrent tumors developed during the first year are fatal for the patients. Possibly contributing to this effect, among other causes, is that therapy induces changes of polysaccharide heparan sulfate (HS) chains in the cancer cells and/or tumor microenvironment. The aim of this study was to perform a comparative analysis of heparanase (HPSE) expression and HS content in different normal and GBM brain tissues. Immunohistochemical analysis revealed a significant decrease of HPSE protein content in the tumor (12-15-fold) and paratumorous (2.5-3-fold) GBM tissues compared with normal brain tissue, both in cellular and extracellular compartments. The relapsed GBM tumors demonstrated significantly higher intertumor and/or intratumor heterogeneity of HPSE and HS content and distribution compared with the matched primary ones (from the same patient) (n = 8), although overall expression levels did not show significant differences, suggesting local deterioration of HPSE expression with reference to the control system or by the treatment. Double immunofluorescence staining of various glioblastoma cell lines (U87, U343, LN18, LN71, T406) demonstrated a complex pattern of HPSE expression and HS content with a tendency towards a negative association of these parameters. Taken together, the results demonstrate the increase of intratumor heterogeneity of HPSE protein in relapsed GBM tumors and suggest misbalance of HPSE expression regulation by the adjuvant anti-GBM chemoradiotherapy.BACKGROUND Dialysis treatment is improving, but several long-term problems remain unsolved, including metabolic bone disease linked to chronic kidney disease (CKD-MBD). The availability of new, efficacious but expensive drugs (intravenous calcimimetic agents) poses ethical problems, especially in the setting of budget limitations. METHODS Reasons of choice, side effects, biochemical trends were discussed in a cohort of 15 patients (13% of the dialysis population) who stared treatment with intravenous calcimimetics in a single center. All patients had previously been treated with oral calcimimetic agents; dialysis efficacy was at target in 14/15; hemodiafiltration was employed in 10/15. Median Charlson Comorbidity Index was 8. The indications were discussed according to the principlist ethics (beneficience, non maleficience, justice and autonomy). Biochemical results were analyzed to support the clinical-ethical choices. RESULTS In the context of a strict clinical and biochemical surveillance, the lack of sideight questions", this example can raise awareness of the importance of including an ethical analysis in the choice of "economically relevant" drugs.Cytochrome c oxidase (COX) is regulated through tissue-, development- or environment-controlled expression of subunit isoforms. The COX4 subunit is thought to optimize respiratory chain function according to oxygen-controlled expression of its isoforms COX4i1 and COX4i2. However, biochemical mechanisms of regulation by the two variants are only partly understood. We created an HEK293-based knock-out cellular model devoid of both isoforms (COX4i1/2 KO). Subsequent knock-in of COX4i1 or COX4i2 generated cells with exclusive expression of respective isoform. Both isoforms complemented the respiratory defect of COX4i1/2 KO. The content, composition, and incorporation of COX into supercomplexes were comparable in COX4i1- and COX4i2-expressing cells. Also, COX activity, cytochrome c affinity, and respiratory rates were undistinguishable in cells expressing either isoform. Analysis of energy metabolism and the redox state in intact cells uncovered modestly increased preference for mitochondrial ATP production, consistent with the increased NADH pool oxidation and lower ROS in COX4i2-expressing cells in normoxia. Most remarkable changes were uncovered in COX oxygen kinetics. The p50 (partial pressure of oxygen at half-maximal respiration) was increased twofold in COX4i2 versus COX4i1 cells, indicating decreased oxygen affinity of the COX4i2-containing enzyme. Our finding supports the key role of the COX4i2-containing enzyme in hypoxia-sensing pathways of energy metabolism.Inflammasomes are intracellular multiple protein complexes that mount innate immune responses to tissue damage and invading pathogens. Their excessive activation is crucial in the development and pathogenesis of inflammatory disorders. Microtubules have been reported to provide the platform for mediating the assembly and activation of NLRP3 inflammasome. Recently, we have identified the microtubule-associated immune molecule guanine nucleotide exchange factor-H1 (GEF-H1) that is crucial in coupling microtubule dynamics to the initiation of microtubule-mediated immune responses. However, whether GEF-H1 also controls the activation of other immune receptors that require microtubules is still undefined. Here we employed GEF-H1-deficient mouse bone marrow-derived macrophages (BMDMs) to interrogate the impact of GEF-H1 on the activation of NLRP3 inflammasome. https://www.selleckchem.com/products/takinib.html NLRP3 but not NLRC4 or AIM2 inflammasome-mediated IL-1β production was dependent on dynamic microtubule network in wild-type (WT) BMDMs. However, GEF-H1 deficiency did not affect NLRP3-driven IL-1β maturation and secretion in macrophages.